Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell Proteomics ; 22(4): 100529, 2023 04.
Article in English | MEDLINE | ID: mdl-36931626

ABSTRACT

The canonical view of PI3Kα signaling describes phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) generation and activation of downstream effectors at the plasma membrane or at microtubule-bound endosomes. Here, we show that colorectal cancer (CRC) cell lines exhibit a diverse plasma membrane-nuclear distribution of PI3Kα, controlling corresponding levels of subcellular PtdIns(3,4,5)P3 pools. PI3Kα nuclear translocation was mediated by the importin ß-dependent nuclear import pathway. By PtdIns(3,4,5)P3 affinity capture mass spectrometry done in the presence of SDS on CRC cell lines with PI3Kα nuclear localization, we identified 867 potential nuclear PtdIns(3,4,5)P3 effector proteins. Nuclear PtdIns(3,4,5)P3 interactome proteins were characterized by noncanonical PtdIns(3,4,5)P3-binding domains and showed overrepresentation for nuclear membrane, nucleolus, and nuclear speckles. The nuclear PtdIns(3,4,5)P3 interactome was enriched for proteins related to RNA metabolism, with splicing reporter assays and SC-35 foci staining suggesting a role of epidermal growth factor-stimulated nuclear PI3Kα signaling in modulating pre-mRNA splicing. In patient tumors, nuclear p110α staining was associated with lower T stage and mucinous histology. These results indicate that PI3Kα translocation mediates nuclear PtdIns(3,4,5)P3 effector signaling in human CRC, modulating signaling responses.


Subject(s)
Colorectal Neoplasms , Phosphatidylinositols , Humans , Phosphatidylinositols/metabolism , Phosphatidylinositol Phosphates/metabolism , Signal Transduction , Cell Nucleus/metabolism , Colorectal Neoplasms/metabolism
2.
Gastroenterology ; 165(1): 104-120, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36933623

ABSTRACT

BACKGROUND & AIMS: Dysbiosis of gut microbiota is linked to the development of colorectal cancer (CRC). However, microbiota-based stratification of CRC tissue and how this relates to clinicomolecular characteristics and prognosis remains to be clarified. METHODS: Tumor and normal mucosa from 423 patients with stage I to IV CRC were profiled by bacterial 16S rRNA gene sequencing. Tumors were characterized for microsatellite instability (MSI), CpG island methylator phenotype (CIMP), APC, BRAF, KRAS, PIK3CA, FBXW7, SMAD4, and TP53 mutations, subsets for chromosome instability (CIN), mutation signatures, and consensus molecular subtypes (CMS). Microbial clusters were validated in an independent cohort of 293 stage II/III tumors. RESULTS: Tumors reproducibly stratified into 3 oncomicrobial community subtypes (OCSs) with distinguishing features: OCS1 (Fusobacterium/oral pathogens, proteolytic, 21%), right-sided, high-grade, MSI-high, CIMP-positive, CMS1, BRAF V600E, and FBXW7 mutated; OCS2 (Firmicutes/Bacteroidetes, saccharolytic, 44%), and OCS3 (Escherichia/Pseudescherichia/Shigella, fatty acid ß-oxidation, 35%) both left-sided and exhibiting CIN. OCS1 was associated with MSI-related mutation signatures (SBS15, SBS20, ID2, and ID7) and OCS2 and OCS3 with SBS18 related to damage by reactive oxygen species. Among stage II/III patients, OCS1 and OCS3 both had poorer overall survival compared with OCS2 for microsatellite stable tumors (multivariate hazard ratio [HR], 1.85; 95% confidence interval [CI], 1.15-2.99; P = .012; and HR, 1.52; 95% CI 1.01-2.29; P = .044, respectively) and left-sided tumors (multivariate HR, 2.66; 95% CI, 1.45-4.86; P = .002; and HR, 1.76; 95% CI, 1.03-3.02; P = .039, respectively). CONCLUSIONS: OCS classification stratified CRCs into 3 distinct subgroups with different clinicomolecular features and outcomes. Our findings provide a framework for a microbiota-based stratification of CRC to refine prognostication and to inform the development of microbiota-targeted interventions.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Prognosis , F-Box-WD Repeat-Containing Protein 7/genetics , Proto-Oncogene Proteins B-raf/genetics , RNA, Ribosomal, 16S , DNA Methylation , Mutation , Microsatellite Instability , Chromosomal Instability , Phenotype , Colorectal Neoplasms/pathology , CpG Islands
3.
Development ; 148(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-34180969

ABSTRACT

Ets homologous factor (EHF) is a member of the epithelial-specific Ets (ESE) family of transcription factors. To investigate its role in development and epithelial homeostasis, we generated a series of novel mouse strains in which the Ets DNA-binding domain of Ehf was deleted in all tissues (Ehf-/-) or specifically in the gut epithelium. Ehf-/- mice were born at the expected Mendelian ratio, but showed reduced body weight gain, and developed a series of pathologies requiring most Ehf-/- mice to reach an ethical endpoint before reaching 1 year of age. These included papillomas in the facial skin, abscesses in the preputial glands (males) or vulvae (females), and corneal ulcers. Ehf-/-mice also displayed increased susceptibility to experimentally induced colitis, which was confirmed in intestinal-specific Ehf knockout mice. Gut-specific Ehf deletion also impaired goblet cell differentiation, induced extensive transcriptional reprogramming in the colonic epithelium and enhanced Apc-initiated adenoma development. The Ets DNA-binding domain of EHF is therefore essential for postnatal homeostasis of the epidermis and colonic epithelium, and its loss promotes colonic tumour development.


Subject(s)
Cell Transformation, Neoplastic/genetics , Colonic Neoplasms/etiology , Epidermis/metabolism , Genes, APC , Homeostasis , Intestinal Mucosa/metabolism , Transcription Factors/genetics , Animals , Cellular Reprogramming/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Female , Gene Expression Regulation , Goblet Cells/metabolism , Goblet Cells/pathology , Male , Mice , Mice, Knockout , Transcription Factors/metabolism
4.
BMC Cancer ; 22(1): 604, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35655179

ABSTRACT

BACKGROUND: Real-world data (RWD) is increasingly being embraced as an invaluable source of information to address clinical and policy-relevant questions that are unlikely to ever be answered by clinical trials. However, the largely unrealised potential of RWD is the value to be gained by supporting prospective studies and translational research. Here we describe the design and implementation of an Australian brain cancer registry, BRAIN, which is pursuing these opportunities. METHODS: BRAIN was designed by a panel of clinicians in conjunction with BIOGRID to capture comprehensive clinical data on patients diagnosed with brain tumours from diagnosis through treatment to recurrence or death. Extensive internal and external testing was undertaken, followed by implementation at multiple sites across Victoria and Tasmania. RESULTS: Between February 2021 and December 2021, a total of 350 new patients from 10 sites, including one private and two regional, were entered into BRAIN. Additionally, BRAIN supports the world's first registry trial in neuro-oncology, EX-TEM, addressing the optimal duration of post-radiation temozolomide; and BioBRAIN, a dedicated brain tumour translational program providing a pipeline for biospecimen collection matched with linked clinical data. CONCLUSIONS: Here we report on the first data collection effort in brain tumours for Australia, which we believe to be unique worldwide given the number of sites and patients involved and the extent to which the registry resource is being leveraged to support clinical and translational research. Further directions such as passive data flow and data linkages, use of artificial intelligence and inclusion of patient-entered data are being explored.


Subject(s)
Artificial Intelligence , Brain Neoplasms , Brain Neoplasms/epidemiology , Brain Neoplasms/therapy , Data Collection , Humans , Prospective Studies , Registries , Victoria
5.
Gut ; 70(11): 2138-2149, 2021 11.
Article in English | MEDLINE | ID: mdl-33414168

ABSTRACT

OBJECTIVE: Germline pathogenic variants (PVs) in the DNA mismatch repair (MMR) genes and in the base excision repair gene MUTYH underlie hereditary colorectal cancer (CRC) and polyposis syndromes. We evaluated the robustness and discriminatory potential of tumour mutational signatures in CRCs for identifying germline PV carriers. DESIGN: Whole-exome sequencing of formalin-fixed paraffin-embedded (FFPE) CRC tissue was performed on 33 MMR germline PV carriers, 12 biallelic MUTYH germline PV carriers, 25 sporadic MLH1 methylated MMR-deficient CRCs (MMRd controls) and 160 sporadic MMR-proficient CRCs (MMRp controls) and included 498 TCGA CRC tumours. COSMIC V3 single base substitution (SBS) and indel (ID) mutational signatures were assessed for their ability to differentiate CRCs that developed in carriers from non-carriers. RESULTS: The combination of mutational signatures SBS18 and SBS36 contributing >30% of a CRC's signature profile was able to discriminate biallelic MUTYH carriers from all other non-carrier control CRCs with 100% accuracy (area under the curve (AUC) 1.0). SBS18 and SBS36 were associated with specific MUTYH variants p.Gly396Asp (p=0.025) and p.Tyr179Cys (p=5×10-5), respectively. The combination of ID2 and ID7 could discriminate the 33 MMR PV carrier CRCs from the MMRp control CRCs (AUC 0.99); however, SBS and ID signatures, alone or in combination, could not provide complete discrimination (AUC 0.79) between CRCs from MMR PV carriers and sporadic MMRd controls. CONCLUSION: Assessment of SBS and ID signatures can discriminate CRCs from biallelic MUTYH carriers and MMR PV carriers from non-carriers with high accuracy, demonstrating utility as a potential diagnostic and variant classification tool.


Subject(s)
Adenomatous Polyposis Coli/genetics , Colorectal Neoplasms/genetics , DNA Glycosylases , Germ-Line Mutation , MutL Protein Homolog 1 , DNA Mismatch Repair , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Male , Middle Aged , Syndrome , Exome Sequencing
6.
Mod Pathol ; 33(3): 483-495, 2020 03.
Article in English | MEDLINE | ID: mdl-31471586

ABSTRACT

TP53 mutations drive colorectal cancer development, with missense mutations frequently leading to accumulation of abnormal TP53 protein. TP53 alterations have been associated with poor prognosis and chemotherapy resistance, but data remain controversial. Here, we examined the predictive utility of TP53 overexpression in the context of current adjuvant treatment practice for patients with stage III colorectal cancer. A prospective cohort of 264 stage III patients was tested for association of TP53 expression with 5-year disease-free survival, grouped by adjuvant treatment. Findings were validated in an independent retrospective cohort of 274 stage III patients. Overexpression of TP53 protein (TP53+) was found in 53% and 52% of cases from the prospective and retrospective cohorts, respectively. Among patients receiving adjuvant chemotherapy, TP53+ status was associated with shorter disease-free survival (p ≤ 0.026 for both cohorts), while no difference in outcomes between TP53+ and TP53- cases was observed for patients treated with surgery alone. Considering patients with TP53- tumors, those receiving adjuvant treatment had better outcomes compared with those treated with surgery alone (p ≤ 0.018 for both cohorts), while no treatment benefit was apparent for patients with TP53+ tumors. Combined cohort-stratified analysis adjusted for clinicopathological variables and DNA mismatch repair status confirmed a significant interaction between TP53 expression and adjuvant treatment for disease-free survival (pinteraction = 0.030). For the combined cohort, the multivariate hazard ratio for TP53 overexpression among patients receiving adjuvant chemotherapy was 2.03 (95% confidence interval 1.41-2.95, p < 0.001), while the hazard ratio for adjuvant treatment among patients with TP53- tumors was 0.42 (95% confidence interval 0.24-0.71, p = 0.001). Findings were maintained irrespective of tumor location or when restricted to mismatch repair-proficient tumors. Our data suggest that adjuvant chemotherapy benefit in stage III colorectal cancer is restricted to cases with low-level TP53 protein expression. Identifying TP53+ tumors could highlight patients that may benefit from more aggressive treatment or follow-up.


Subject(s)
Adenocarcinoma/chemistry , Adenocarcinoma/therapy , Biomarkers, Tumor/analysis , Colectomy , Colorectal Neoplasms/chemistry , Colorectal Neoplasms/therapy , Tumor Suppressor Protein p53/analysis , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Chemotherapy, Adjuvant , Clinical Decision-Making , Colectomy/adverse effects , Colectomy/mortality , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Disease-Free Survival , Female , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Staging , Predictive Value of Tests , Prospective Studies , Retrospective Studies , Risk Factors , Time Factors , Up-Regulation
7.
Mod Pathol ; 33(7): 1420-1432, 2020 07.
Article in English | MEDLINE | ID: mdl-32047231

ABSTRACT

Mucinous colorectal adenocarcinoma (CRC) is conventionally defined by extracellular mucin comprising >50% of the tumour area, while tumours with ≤50% mucin are designated as having a mucinous component. However, these definitions are largely arbitrary and comparisons of clinico-molecular features and outcomes by proportion of mucinous component are limited. A cohort of 1643 patients with stage II/III cancer was examined for tumour mucinous component, DNA mismatch repair (MMR) status, BRAF mutation and tumour infiltrating lymphocytes (TILs). Tumours with ≤50% mucinous component exhibited similar characteristics as mucinous tumours, including association with female gender, proximal location, high grade, TIL-high, defective MMR (dMMR) and BRAF mutation. Proportion of mucinous component did not stratify disease-free survival (DFS). In univariate analysis dMMR status, but not histological grade, stratified survival for mucinous and mucinous component tumours; however, in multivariate analysis dMMR status was not an independent predictor. BRAF mutation prognostic value depended on mucinous differentiation and MMR status, with poor prognosis limited to non-mucinous pMMR tumours (HR 2.61, 95% CI 1.69-4.03; p < 0.001). TIL status was a strong independent predictor of DFS in mucinous/mucinous component tumours (HR 0.40, 95% CI 0.23-0.67; p < 0.001), and a superior predictor of prognosis compared with histological grade, MMR and BRAF mutation. Mucinous component and mucinous stage II/III CRCs exhibit clinico-molecular resemblances, with histological grade and BRAF mutation lacking prognostic value. Prognosis for these tumours was instead strongly associated with TIL status, with the most favourable outcomes in TIL-high dMMR tumours, whilst TIL-low tumours had poor outcomes irrespective of MMR status.


Subject(s)
Adenocarcinoma, Mucinous/pathology , Biomarkers, Tumor/analysis , Colorectal Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Adenocarcinoma, Mucinous/genetics , Adenocarcinoma, Mucinous/immunology , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , DNA Mismatch Repair , Disease-Free Survival , Female , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged , Mutation , Prognosis , Proto-Oncogene Proteins B-raf/genetics
8.
Anal Bioanal Chem ; 412(10): 2339-2351, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32006064

ABSTRACT

Fatty acids are a major source of structural diversity within the lipidome due to variations in their acyl chain lengths, branching, and cyclization, as well as the number, position, and stereochemistry of double bonds within their mono- and poly-unsaturated species. Here, the utility of 193 nm UltraViolet PhotoDissociation tandem mass spectrometry (UVPD-MS/MS) has been evaluated for the detailed structural characterization of a series of unsaturated fatty acid lipid species. UVPD-MS/MS of unsaturated fatty acids is shown to yield pairs of unique diagnostic product ions resulting from cleavages adjacent to their C=C double bonds, enabling unambiguous localization of the site(s) of unsaturation within these lipids. The effect of several experimental variables on the observed fragmentation behaviour and UVPD-MS/MS efficiency, including the position and number of double bonds, the effect of conjugated versus non-conjugated double bonds, the number of laser pulses, and the influence of alkali metal cations (Li, Na, K) as the ionizing adducts, has been evaluated. Importantly, the abundance of the diagnostic ions is shown to enable relative quantitation of mixtures of fatty acid isomers across a range of molar ratios. Finally, the practical application of 193 nm UVPD-MS/MS is demonstrated via characterization of changes in the ratios of fatty acid double bond positional isomers in isogenic colorectal cancer cell lines. This study therefore demonstrates the practicality of UVPD-MS/MS for the structural characterization of fatty acid isomers in lipidome analysis workflows.


Subject(s)
Fatty Acids, Unsaturated/chemistry , Tandem Mass Spectrometry/methods , Humans , Isomerism , Lipidomics , Molecular Structure , Tandem Mass Spectrometry/instrumentation
9.
Gut ; 68(3): 465-474, 2019 03.
Article in English | MEDLINE | ID: mdl-29382774

ABSTRACT

OBJECTIVE: Tumour-infiltrating lymphocyte (TIL) response and deficient DNA mismatch repair (dMMR) are determinants of prognosis in colorectal cancer. Although highly correlated, evidence suggests that these are independent predictors of outcome. However, the prognostic significance of combined TIL/MMR classification and how this compares to the major genomic and transcriptomic subtypes remain unclear. DESIGN: A prospective cohort of 1265 patients with stage II/III cancer was examined for TIL/MMR status and BRAF/KRAS mutations. Consensus molecular subtype (CMS) status was determined for 142 cases. Associations with 5-year disease-free survival (DFS) were evaluated and validated in an independent cohort of 602 patients. RESULTS: Tumours were categorised into four subtypes based on TIL and MMR status: TIL-low/proficient-MMR (pMMR) (61.3% of cases), TIL-high/pMMR (14.8%), TIL-low/dMMR (8.6%) and TIL-high/dMMR (15.2%). Compared with TIL-high/dMMR tumours with the most favourable prognosis, both TIL-low/dMMR (HR=3.53; 95% CI=1.88 to 6.64; Pmultivariate<0.001) and TIL-low/pMMR tumours (HR=2.67; 95% CI=1.47 to 4.84; Pmultivariate=0.001) showed poor DFS. Outcomes of patients with TIL-low/dMMR and TIL-low/pMMR tumours were similar. TIL-high/pMMR tumours showed intermediate survival rates. These findings were validated in an independent cohort. TIL/MMR status was a more significant predictor of prognosis than National Comprehensive Cancer Network high-risk features and was a superior predictor of prognosis compared with genomic (dMMR, pMMR/BRAFwt /KRASwt , pMMR/BRAFmut /KRASwt , pMMR/BRAFwt /KRASmut ) and transcriptomic (CMS 1-4) subtypes. CONCLUSION: TIL/MMR classification identified subtypes of stage II/III colorectal cancer associated with different outcomes. Although dMMR status is generally considered a marker of good prognosis, we found this to be dependent on the presence of TILs. Prognostication based on TIL/MMR subtypes was superior compared with histopathological, genomic and transcriptomic subtypes.


Subject(s)
Adenocarcinoma/immunology , Colorectal Neoplasms/immunology , DNA Mismatch Repair , Lymphocytes, Tumor-Infiltrating/immunology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Aged , Aged, 80 and over , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Genomics , Humans , Kaplan-Meier Estimate , Lymphocyte Count , Male , Middle Aged , Neoplasm Staging , Prognosis , Prospective Studies , Reproducibility of Results , Transcriptome
10.
Int J Cancer ; 145(1): 132-142, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30620048

ABSTRACT

Adjuvant! Online Inc (A!O), the Memorial Sloan Kettering Cancer Center (MSKCC), MD Anderson (MDA) and Mayo Clinic (MC) provide calculators to predict survival probabilities for patients with resected early-stage colon cancer, trained on data from United States (US) patient cohorts or patients enrolled in international clinical trials. Limited data exist on the transferability of calculators across healthcare systems. Calculator transferability to Australian community practice was evaluated for 1,401 stage II/III patients. Calibration and discrimination were assessed for overall (OS), cancer-specific (CSS) or recurrence-free survival (RFS). The US patient cohort-based calculators, A!O, MSKCC and MDA, significantly overestimated risks of recurrence and death in Australian patients, with 5-year OS, CSS and RFS prediction differences of -6.5% to -9.9%, -9.1% to -14.4% and - 3.8% to -6.8%, respectively (p < 0.001). Significant heterogeneity in calibration was observed for subgroups by tumor stage and treatment, age, gender, tumor location, ECOG and ASA score. Calibration appeared acceptable for the clinical trial patient-based MC calculator, but restricted tool applicability (stage III patients, ≥12 examined lymph nodes, receiving adjuvant treatment) limited the sample size. Compared to AJCC 7th edition tumor staging, calculators showed improved discrimination for OS, but no improvement for CSS and RFS. In conclusion, deficiencies in calibration limited transferability of US patient cohort-based survival calculators for early-stage colon cancer to the setting of Australian community practice. Our results demonstrate the utility for multi-feature survival calculators to improve OS predictions but highlight the importance for performance assessment of tools prior to implementation in an external health care setting.


Subject(s)
Colonic Neoplasms/mortality , Nomograms , Adenocarcinoma/mortality , Adenocarcinoma/therapy , Aged , Aged, 80 and over , Australia/epidemiology , Calibration , Colonic Neoplasms/therapy , Community Health Services/statistics & numerical data , Female , Humans , Internet , Kaplan-Meier Estimate , Male , Neoplasm Staging , Survival Analysis
11.
Gastroenterology ; 153(4): 1082-1095, 2017 10.
Article in English | MEDLINE | ID: mdl-28625833

ABSTRACT

BACKGROUND AND AIMS: Proteomics holds promise for individualizing cancer treatment. We analyzed to what extent the proteomic landscape of human colorectal cancer (CRC) is maintained in established CRC cell lines and the utility of proteomics for predicting therapeutic responses. METHODS: Proteomic and transcriptomic analyses were performed on 44 CRC cell lines, compared against primary CRCs (n=95) and normal tissues (n=60), and integrated with genomic and drug sensitivity data. RESULTS: Cell lines mirrored the proteomic aberrations of primary tumors, in particular for intrinsic programs. Tumor relationships of protein expression with DNA copy number aberrations and signatures of post-transcriptional regulation were recapitulated in cell lines. The 5 proteomic subtypes previously identified in tumors were represented among cell lines. Nonetheless, systematic differences between cell line and tumor proteomes were apparent, attributable to stroma, extrinsic signaling, and growth conditions. Contribution of tumor stroma obscured signatures of DNA mismatch repair identified in cell lines with a hypermutation phenotype. Global proteomic data showed improved utility for predicting both known drug-target relationships and overall drug sensitivity as compared with genomic or transcriptomic measurements. Inhibition of targetable proteins associated with drug responses further identified corresponding synergistic or antagonistic drug combinations. Our data provide evidence for CRC proteomic subtype-specific drug responses. CONCLUSIONS: Proteomes of established CRC cell line are representative of primary tumors. Proteomic data tend to exhibit improved prediction of drug sensitivity as compared with genomic and transcriptomic profiles. Our integrative proteogenomic analysis highlights the potential of proteome profiling to inform personalized cancer medicine.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Neoplasm Proteins/metabolism , Precision Medicine , Proteome , Biomarkers, Tumor/genetics , Cell Line, Tumor , Chromatography, Liquid , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Databases, Protein , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mutation , Neoplasm Proteins/genetics , Patient Selection , Polymorphism, Single Nucleotide , Proteomics/methods , Signal Transduction , Stromal Cells/metabolism , Tandem Mass Spectrometry , Transcriptome , Tumor Microenvironment
12.
Nucleic Acids Res ; 44(D1): D969-74, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26496946

ABSTRACT

In order to advance our understanding of colorectal cancer (CRC) development and progression, biomedical researchers have generated large amounts of OMICS data from CRC patient samples and representative cell lines. However, these data are deposited in various repositories or in supplementary tables. A database which integrates data from heterogeneous resources and enables analysis of the multidimensional data sets, specifically pertaining to CRC is currently lacking. Here, we have developed Colorectal Cancer Atlas (http://www.colonatlas.org), an integrated web-based resource that catalogues the genomic and proteomic annotations identified in CRC tissues and cell lines. The data catalogued to-date include sequence variations as well as quantitative and non-quantitative protein expression data. The database enables the analysis of these data in the context of signaling pathways, protein-protein interactions, Gene Ontology terms, protein domains and post-translational modifications. Currently, Colorectal Cancer Atlas contains data for >13 711 CRC tissues, >165 CRC cell lines, 62 251 protein identifications, >8.3 million MS/MS spectra, >18 410 genes with sequence variations (404 278 entries) and 351 pathways with sequence variants. Overall, Colorectal Cancer Atlas has been designed to serve as a central resource to facilitate research in CRC.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Databases, Genetic , Genomics , Proteomics , Cell Line, Tumor , Humans , Molecular Sequence Annotation , Mutation , Protein Processing, Post-Translational , Protein Structure, Tertiary
13.
Nat Genet ; 39(8): 984-8, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17618284

ABSTRACT

Much of the variation in inherited risk of colorectal cancer (CRC) is probably due to combinations of common low risk variants. We conducted a genome-wide association study of 550,000 tag SNPs in 930 familial colorectal tumor cases and 960 controls. The most strongly associated SNP (P = 1.72 x 10(-7), allelic test) was rs6983267 at 8q24.21. To validate this finding, we genotyped rs6983267 in three additional CRC case-control series (4,361 affected individuals and 3,752 controls; 1,901 affected individuals and 1,079 controls; 1,072 affected individuals and 415 controls) and replicated the association, providing P = 1.27 x 10(-14) (allelic test) overall, with odds ratios (ORs) of 1.27 (95% confidence interval (c.i.): 1.16-1.39) and 1.47 (95% c.i.: 1.34-1.62) for heterozygotes and rare homozygotes, respectively. Analyses based on 1,477 individuals with colorectal adenoma and 2,136 controls suggest that susceptibility to CRC is mediated through development of adenomas (OR = 1.21, 95% c.i.: 1.10-1.34; P = 6.89 x 10(-5)). These data show that common, low-penetrance susceptibility alleles predispose to colorectal neoplasia.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Aged , Chromosomes, Human, Pair 8 , Female , Genotype , Humans , Male , Middle Aged
14.
Genes Chromosomes Cancer ; 54(5): 303-14, 2015 May.
Article in English | MEDLINE | ID: mdl-25726927

ABSTRACT

The progression of benign colorectal adenomas into cancer is associated with the accumulation of chromosomal aberrations. Even though patterns and frequencies of chromosomal aberrations have been well established in colorectal carcinomas, corresponding patterns of aberrations in adenomas are less well documented. The aim of this study was to profile chromosomal aberrations across colorectal adenomas and carcinomas to provide a better insight into key changes during tumor initiation and progression. Single nucleotide polymorphism array analysis was performed on 216 colorectal tumor/normal matched pairs, comprising 60 adenomas and 156 carcinomas. While many chromosomal aberrations were specific to carcinomas, those with the highest frequency in carcinomas (amplification of chromosome 7, 13q, and 20q; deletion of 17p and chromosome 18; LOH of 1p, chromosome 4, 5q, 8p, 17p, chromosome 18, and 20p) were also identified in adenomas. Hierarchical clustering using chromosomal aberrations revealed three distinct subtypes. Interestingly, these subtypes were only partially dependent on tumor staging. A cluster of colorectal cancer patients with frequent chromosomal deletions had the least favorable prognosis, and a number of adenomas (n = 9) were also present in the cluster suggesting that, at least in some tumors, the chromosomal aberration pattern is determined at a very early stage of tumor formation. Finally, analysis of LOH events revealed that copy-neutral/gain LOH (CN/G-LOH) is frequent (>10%) in carcinomas at 5q, 11q, 15q, 17p, chromosome 18, 20p, and 22q. Deletion of the corresponding region is sometimes present in adenomas, suggesting that LOH at these loci may play an important role in tumor initiation.


Subject(s)
Adenoma/genetics , Carcinoma/genetics , Chromosome Aberrations , Colorectal Neoplasms/genetics , Polymorphism, Single Nucleotide , Adenoma/pathology , Aged , Aged, 80 and over , Carcinoma/pathology , Colorectal Neoplasms/pathology , Disease Progression , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Neoplasm Staging , Oligonucleotide Array Sequence Analysis
15.
Proteomics ; 15(15): 2597-601, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25921073

ABSTRACT

As high-throughput techniques including proteomics become more accessible to individual laboratories, there is an urgent need for a user-friendly bioinformatics analysis system. Here, we describe FunRich, an open access, standalone functional enrichment and network analysis tool. FunRich is designed to be used by biologists with minimal or no support from computational and database experts. Using FunRich, users can perform functional enrichment analysis on background databases that are integrated from heterogeneous genomic and proteomic resources (>1.5 million annotations). Besides default human specific FunRich database, users can download data from the UniProt database, which currently supports 20 different taxonomies against which enrichment analysis can be performed. Moreover, the users can build their own custom databases and perform the enrichment analysis irrespective of organism. In addition to proteomics datasets, the custom database allows for the tool to be used for genomics, lipidomics and metabolomics datasets. Thus, FunRich allows for complete database customization and thereby permits for the tool to be exploited as a skeleton for enrichment analysis irrespective of the data type or organism used. FunRich (http://www.funrich.org) is user-friendly and provides graphical representation (Venn, pie charts, bar graphs, column, heatmap and doughnuts) of the data with customizable font, scale and color (publication quality).


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Protein Interaction Maps , Software , Data Interpretation, Statistical , Gene Expression Profiling/methods , Gene Ontology , Genomics/methods , Humans , Internet , Metabolomics/methods , Proteomics/methods , Reproducibility of Results , User-Computer Interface
16.
J Biol Chem ; 289(36): 25306-16, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25037223

ABSTRACT

The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275. Resistant cell lines were significantly enriched for those harboring the CpG island methylator phenotype (p = 0.036, Chi square test), and resistant cell lines harbored methylation of the ALPi promoter, particularly of a CpG site within a critical KLF/Sp regulatory element required for butyrate induction of ALPi promoter activity. However, butyrate induction of an exogenous ALPi promoter-reporter paralleled up-regulation of endogenous ALPi expression across the cell lines, suggesting the presence or absence of a key transcriptional regulator is the major determinant of ALPi induction. Through microarray profiling of sensitive and resistant cell lines, we identified KLF5 to be both basally more highly expressed as well as preferentially induced by butyrate in sensitive cell lines. KLF5 overexpression induced ALPi promoter-reporter activity in resistant cell lines, KLF5 knockdown attenuated butyrate induction of ALPi expression in sensitive lines, and butyrate selectively enhanced KLF5 binding to the ALPi promoter in sensitive cells. These findings demonstrate that butyrate induction of the cell differentiation marker ALPi is mediated through KLF5 and identifies subsets of colon cancer cell lines responsive and refractory to this effect.


Subject(s)
Alkaline Phosphatase/metabolism , Cell Differentiation/drug effects , Epithelial Cells/metabolism , Histone Deacetylase Inhibitors/pharmacology , Kruppel-Like Transcription Factors/metabolism , Alkaline Phosphatase/genetics , Benzamides/pharmacology , Binding Sites/genetics , Blotting, Western , Butyric Acid/pharmacology , Cell Differentiation/genetics , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , CpG Islands/genetics , DNA Methylation , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , HCT116 Cells , HT29 Cells , Humans , Kruppel-Like Transcription Factors/genetics , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , Protein Binding , Pyridines/pharmacology , Reverse Transcriptase Polymerase Chain Reaction
17.
Br J Cancer ; 113(6): 979-88, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26305864

ABSTRACT

BACKGROUND: APC mutations (APC-mt) occur in ∼70% of colorectal cancers (CRCs), but their relationship to prognosis is unclear. METHODS: APC prognostic value was evaluated in 746 stage I-IV CRC patients, stratifying for tumour location and microsatellite instability (MSI). Microarrays were used to identify a gene signature that could classify APC mutation status, and classifier ability to predict prognosis was examined in an independent cohort. RESULTS: Wild-type APC microsatellite stable (APC-wt/MSS) tumours from the proximal colon showed poorer overall and recurrence-free survival (OS, RFS) than APC-mt/MSS proximal, APC-wt/MSS distal and APC-mt/MSS distal tumours (OS HR⩾1.79, P⩽0.015; RFS HR⩾1.88, P⩽0.026). APC was a stronger prognostic indicator than BRAF, KRAS, PIK3CA, TP53, CpG island methylator phenotype or chromosomal instability status (P⩽0.036). Microarray analysis similarly revealed poorer survival in MSS proximal cancers with an APC-wt-like signature (P=0.019). APC status did not affect outcomes in MSI tumours. In a validation on 206 patients with proximal colon cancer, APC-wt-like signature MSS cases showed poorer survival than APC-mt-like signature MSS or MSI cases (OS HR⩾2.50, P⩽0.010; RFS HR⩾2.14, P⩽0.025). Poor prognosis APC-wt/MSS proximal tumours exhibited features of the sessile serrated neoplasia pathway (P⩽0.016). CONCLUSIONS: APC-wt status is a marker of poor prognosis in MSS proximal colon cancer.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Microsatellite Repeats/genetics , Adult , Aged , Class I Phosphatidylinositol 3-Kinases , Colonic Neoplasms/pathology , CpG Islands , Disease-Free Survival , Female , Genes, p53 , Genes, ras , Humans , Male , Microsatellite Instability , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/mortality , Phosphatidylinositol 3-Kinases/genetics , Prognosis , Protein Array Analysis , Proto-Oncogene Proteins B-raf/genetics
18.
Acta Oncol ; 54(4): 487-92, 2015 04.
Article in English | MEDLINE | ID: mdl-25549537

ABSTRACT

BACKGROUND: Recent data have suggested that regular aspirin use improves overall and cancer-specific survival in the subset of colorectal cancer (CRC) patients harboring PIK3CA mutations. However, the number of PIK3CA-mutated CRC patients examined in these studies was modest. Our collaborative study aims to validate the association between regular aspirin use and survival in patients with PIK3CA-mutated CRC. PATIENTS AND METHODS: Patients with PIK3CA-mutated CRC were identified at Moffitt Cancer Center (MCC) in the United States and Royal Melbourne Hospital (RMH) in Australia. Prospective clinicopathological data and survival data were available. At MCC, PIK3CA mutations were identified by targeted exome sequencing using the Illumina GAIIx Next Generation Sequencing platform. At RMH, Sanger sequencing was utilized. Multivariate survival analyses were conducted using Cox logistic regression. RESULTS: From a cohort of 1487 CRC patients, 185 patients harbored a PIK3CA mutation. Median age of patients with PIK3CA-mutated tumors was 72 years (range: 34-92) and median follow up was 54 months. Forty-nine (26%) patients used aspirin regularly. Regular aspirin use was not associated with improved overall survival (multivariate HR 0.96, p = 0.86). There was a trend towards improved cancer-specific survival (multivariate HR 0.60, p = 0.14), but this was not significant. CONCLUSIONS: Despite examining a large number of patients, we did not confirm that regular aspirin use was associated with statistically significant improvements in survival in PIK3CA-mutated CRC patients. Prospective evaluation of this relationship is warranted.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Aspirin/administration & dosage , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Mutation , Phosphatidylinositol 3-Kinases/genetics , Adult , Aged , Aged, 80 and over , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Aspirin/adverse effects , Class I Phosphatidylinositol 3-Kinases , Colorectal Neoplasms/drug therapy , Female , Humans , Male , Middle Aged
19.
Hum Mol Genet ; 21(4): 934-46, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22076443

ABSTRACT

In genome-wide association studies (GWASs) of colorectal cancer, we have identified two genomic regions in which pairs of tagging-single nucleotide polymorphisms (tagSNPs) are associated with disease; these comprise chromosomes 1q41 (rs6691170, rs6687758) and 12q13.13 (rs7163702, rs11169552). We investigated these regions further, aiming to determine whether they contain more than one independent association signal and/or to identify the SNPs most strongly associated with disease. Genotyping of additional sample sets at the original tagSNPs showed that, for both regions, the two tagSNPs were unlikely to identify a single haplotype on which the functional variation lay. Conversely, one of the pair of SNPs did not fully capture the association signal in each region. We therefore undertook more detailed analyses, using imputation, logistic regression, genealogical analysis using the GENECLUSTER program and haplotype analysis. In the 1q41 region, the SNP rs11118883 emerged as a strong candidate based on all these analyses, sufficient to account for the signals at both rs6691170 and rs6687758. rs11118883 lies within a region with strong evidence of transcriptional regulatory activity and has been associated with expression of PDGFRB mRNA. For 12q13.13, a complex situation was found: SNP rs7972465 showed stronger association than either rs11169552 or rs7136702, and GENECLUSTER found no good evidence for a two-SNP model. However, logistic regression and haplotype analyses supported a two-SNP model, in which a signal at the SNP rs706793 was added to that at rs11169552. Post-GWAS fine-mapping studies are challenging, but the use of multiple tools can assist in identifying candidate functional variants in at least some cases.


Subject(s)
Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 1/genetics , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Chromosome Mapping , Computational Biology , Genome-Wide Association Study , Genotyping Techniques , Haplotypes , Humans , Logistic Models , Software
20.
J Pathol ; 229(3): 441-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23165447

ABSTRACT

Molecular classification of colorectal cancer (CRC) is currently based on microsatellite instability (MSI), KRAS or BRAF mutation and, occasionally, chromosomal instability (CIN). Whilst useful, these categories may not fully represent the underlying molecular subgroups. We screened 906 stage II/III CRCs from the VICTOR clinical trial for somatic mutations. Multivariate analyses (logistic regression, clustering, Bayesian networks) identified the primary molecular associations. Positive associations occurred between: CIN and TP53 mutation; MSI and BRAF mutation; and KRAS and PIK3CA mutations. Negative associations occurred between: MSI and CIN; MSI and NRAS mutation; and KRAS mutation, and each of NRAS, TP53 and BRAF mutations. Some complex relationships were elucidated: KRAS and TP53 mutations had both a direct negative association and a weaker, confounding, positive association via TP53-CIN-MSI-BRAF-KRAS. Our results suggested a new molecular classification of CRCs: (1) MSI(+) and/or BRAF-mutant; (2) CIN(+) and/or TP53(-) mutant, with wild-type KRAS and PIK3CA; (3) KRAS- and/or PIK3CA-mutant, CIN(+) , TP53-wild-type; (4) KRAS(-) and/or PIK3CA-mutant, CIN(-) , TP53-wild-type; (5) NRAS-mutant; (6) no mutations; (7) others. As expected, group 1 cancers were mostly proximal and poorly differentiated, usually occurring in women. Unexpectedly, two different types of CIN(+) CRC were found: group 2 cancers were usually distal and occurred in men, whereas group 3 showed neither of these associations but were of higher stage. CIN(+) cancers have conventionally been associated with all three of these variables, because they have been tested en masse. Our classification also showed potentially improved prognostic capabilities, with group 3, and possibly group 1, independently predicting disease-free survival.


Subject(s)
Biomarkers, Tumor/genetics , Chromosomal Instability , Colorectal Neoplasms/classification , Colorectal Neoplasms/genetics , Molecular Diagnostic Techniques/methods , Mutation , Neoplasm Proteins/genetics , Adult , Aged , Aged, 80 and over , Class I Phosphatidylinositol 3-Kinases , Colorectal Neoplasms/mortality , Disease-Free Survival , Female , Humans , Male , Microsatellite Instability , Middle Aged , Multivariate Analysis , Neoplasm Staging , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras) , Randomized Controlled Trials as Topic , Sex Factors , Succinimides , Tumor Suppressor Protein p53/genetics , ras Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL