Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Am J Physiol Endocrinol Metab ; 327(2): E203-E216, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38895981

ABSTRACT

Retinol saturase (RetSat) is an oxidoreductase involved in lipid metabolism and the cellular sensitivity to peroxides. RetSat is highly expressed in metabolic organs like the liver and adipose tissue and its global loss in mice increases body weight and adiposity. The regulation of RetSat expression and its function in the intestine are unexplored. Here, we show that RetSat is present in different segments of the digestive system, localizes to intestinal epithelial cells, and is upregulated by feeding mice high-fat diet (HFD). Intestine-specific RetSat deletion in adult mice did not affect nutrient absorption and energy homeostasis basally, but lowered body weight gain and fat mass of HFD-fed mice, potentially via increasing locomotor activity. Moreover, jejunal expression of genes related to ß-oxidation and cholesterol efflux was decreased, and colonic cholesterol content was reduced upon RetSat deletion. In colitis, which we show to downregulate intestinal RetSat expression in humans and mice, RetSat ablation improved epithelial architecture of the murine colon. Thus, intestinal RetSat expression is regulated by dietary interventions and inflammation, and its loss reduces weight gain upon HFD feeding and alleviates epithelial damage upon injury.NEW & NOTEWORTHY Retinol saturase (RetSat) is an oxidoreductase with unknown function in the intestine. We found that RetSat localizes in intestinal epithelial cells and that its deletion reduced weight gain and fat mass in obese mice. In colitis, which decreased intestinal RetSat expression in humans and mice, RetSat ablation improved the epithelial architecture of the murine colon, presumably by decreasing ROS production, thus rendering RetSat a novel target for metabolic and inflammatory bowel disease.


Subject(s)
Diet, High-Fat , Homeostasis , Intestinal Mucosa , Obesity , Animals , Humans , Male , Mice , Diet, High-Fat/adverse effects , Homeostasis/physiology , Intestinal Mucosa/metabolism , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Obesity/genetics , Weight Gain
2.
Curr Top Microbiol Immunol ; 444: 1-24, 2023.
Article in English | MEDLINE | ID: mdl-38231213

ABSTRACT

Helicobacter pylori colonizes the human gastric mucosa and persists lifelong. An interactive network between the bacteria and host cells shapes a unique microbial niche within gastric glands that alters epithelial behavior, leading to pathologies such as chronic gastritis and eventually gastric cancer. Gland colonization by the bacterium initiates aberrant trajectories by inducing long-term inflammatory and regenerative gland responses, which involve various specialized epithelial and stromal cells. Recent studies using cell lineage tracing, organoids and scRNA-seq techniques have significantly advanced our knowledge of the molecular "identity" of epithelial and stromal cell subtypes during normal homeostasis and upon infection, and revealed the principles that underly stem cell (niche) behavior under homeostatic conditions as well as upon H. pylori infection. The activation of long-lived stem cells deep in the gastric glands has emerged as a key prerequisite of H. pylori-associated gastric site-specific pathologies such as hyperplasia in the antrum, and atrophy or metaplasia in the corpus, that are considered premalignant lesions. In addition to altering the behaviour of bona fide stem cells, injury-driven de-differentiation and trans-differentation programs, such as "paligenosis", subsequently allow highly specialized secretory cells to re-acquire stem cell functions, driving gland regeneration. This plastic regenerative capacity of gastric glands is required to maintain homeostasis and repair mucosal injuries. However, these processes are co-opted in the context of stepwise malignant transformation in chronic H. pylori infection, causing the emergence, selection and expansion of cancer-promoting stem cells.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Helicobacter Infections/genetics , Stomach , Gastric Mucosa , Stem Cells
3.
Front Endocrinol (Lausanne) ; 15: 1331231, 2024.
Article in English | MEDLINE | ID: mdl-38694940

ABSTRACT

A subset of neuroendocrine tumors (NETs) can cause an excessive secretion of hormones, neuropeptides, and biogenic amines into the bloodstream. These so-called functional NETs evoke a hormone-related disease and lead to several different syndromes, depending on the factors released. One of the most common functional syndromes, carcinoid syndrome, is characterized mainly by over-secretion of serotonin. However, what distinguishes functional from non-functional tumors on a molecular level remains unknown. Here, we demonstrate that the expression of sortilin, a widely expressed transmembrane receptor involved in intracellular protein sorting, is significantly increased in functional compared to non-functional NETs and thus can be used as a biomarker for functional NETs. Furthermore, using a cell line model of functional NETs, as well as organoids, we demonstrate that inhibition of sortilin reduces cellular serotonin concentrations and may therefore serve as a novel therapeutic target to treat patients with carcinoid syndrome.


Subject(s)
Adaptor Proteins, Vesicular Transport , Neuroendocrine Tumors , Serotonin , Female , Humans , Male , Adaptor Proteins, Vesicular Transport/metabolism , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Malignant Carcinoid Syndrome/metabolism , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Serotonin/metabolism , Middle Aged , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL