Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Genome ; 55(7): 529-35, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22794166

ABSTRACT

Island radiation constitutes a playground for species diversification, which has long fascinated researchers and still does today. Because only a small subset of taxa within the pool of island colonizers is concerned by this process, the question is raised on whether some factors could make a taxon prone to radiate. Cheirolophus is the only genus of Centaureinae subtribe to have experienced a radiation in the Canary Islands. Cytogenetic characterization through FISH of 5S and 35S ribosomal RNA genes in eight Cheirolophus species from continent and Canary Islands revealed an unusually high number of 35S predominantly at terminal position, together with a single interstitial 5S rDNA locus in all the studied taxa. Such an abundance of 35S rDNA signals is unique among Centaureinae and predates Cheirolophus arrival in Canary Islands. The possible link of the rDNA profile with radiation process is discussed through a comparison with two other case studies, the closely related Rhaponticum group and the genus Centaurea.


Subject(s)
Centaurea/genetics , Genes, rRNA , Asteraceae/classification , Asteraceae/genetics , DNA, Plant/chemistry , DNA, Plant/metabolism , DNA, Ribosomal/chemistry , DNA, Ribosomal/metabolism , Genome, Plant , In Situ Hybridization, Fluorescence , RNA, Ribosomal, 5S/chemistry , Sequence Analysis, DNA , Spain
2.
Chromosome Res ; 17(3): 291-304, 2009.
Article in English | MEDLINE | ID: mdl-19333769

ABSTRACT

The chromosome organization among 15 wild diploid Coffea species and cultivated tetraploid C. arabica was determined by fluorochrome banding (CMA, DAPI) and double fluorescence in-situ hybridization (FISH) of 5S and 18S rDNA achieved on the same chromosome plates. Two to five chromosome pairs (plus one putative chromosome B) are marked. Overall, there are two SAT-chromosome pairs for East African species and one for the Malagasy and the West and Central African species. 18S rDNA loci are telomeric and strongly marked the SAT-chromosome pairs. Generally, only one pericentromeric 5S rDNA locus characterized East African species, while an additional minor locus co-localized with the 18S rDNA-SAT locus for the Malagasy species and West and Central African species. A combination of rDNA FISH plus CMA and DAPI banding patterns enables identification of almost all the species, even those for which the genetic or botanical status is still being discussed. C. arabica clearly appears to be an allotetraploid species, including one genome from East Africa and one from West and Central Africa. However, since the minor 5S rDNA-SAT locus present in West/Central African genomes is not detected, two evolutionary hypotheses could be put forward for C. arabica. Considering only the diploid species, global trends are obvious in rDNA signal patterns, genome size variations, and geographic distribution of the species, but there are no clear evolutionary trends. However, complex interactions between these factors and environmental growing conditions exist, which have resulted in loss and gain of rDNA loci and probably also in copy repeat number variations in each rDNA family.


Subject(s)
Chromosomes, Plant/genetics , Coffea/genetics , DNA, Ribosomal/genetics , Evolution, Molecular , Genetic Speciation , Genetic Variation , Heterochromatin/genetics , Africa , In Situ Hybridization, Fluorescence , Physical Chromosome Mapping , Species Specificity
3.
Plant Biol (Stuttg) ; 21(2): 237-247, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30468688

ABSTRACT

Genome size evolution and its relationship with pollen grain size has been investigated in sweet potato (Ipomoea batatas), an economically important crop which is closely related to diploid and tetraploid species, assessing the nuclear DNA content of 22 accessions from five Ipomoea species, ten sweet potato varieties and two outgroup taxa. Nuclear DNA amounts were determined using flow cytometry. Pollen grains were studied using scanning and transmission electron microscopy. 2C DNA content of hexaploid I. batatas ranged between 3.12-3.29 pg; the mean monoploid genome size being 0.539 pg (527 Mbp), similar to the related diploid accessions. In tetraploid species I. trifida and I. tabascana, 2C DNA content was, respectively, 2.07 and 2.03 pg. In the diploid species closely related to sweet potato e.g. I. ×leucantha, I. tiliacea, I. trifida and I. triloba, 2C DNA content was 1.01-1.12 pg. However, two diploid outgroup species, I. setosa and I. purpurea, were clearly different from the other diploid species, with 2C of 1.47-1.49 pg; they also have larger chromosomes. The I. batatas genome presents 60.0% AT bases. DNA content and ploidy level were positively correlated within this complex. In I. batatas and the more closely related species I. trifida, the genome size and ploidy levels were correlated with pollen size. Our results allow us to propose alternative or complementary hypotheses to that currently proposed for the formation of hexaploid Ipomoea batatas.


Subject(s)
DNA, Plant/genetics , Ipomoea batatas/genetics , Pollen/ultrastructure , Polyploidy , Cell Nucleus/genetics , DNA, Plant/physiology , Flow Cytometry , Genome, Plant/genetics , Ipomoea batatas/physiology , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Pollen/genetics
4.
Plant Biol (Stuttg) ; 10(2): 256-67, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18304200

ABSTRACT

Genome size, karyotype structure, heterochromatin distribution, position and number of ribosomal genes, as well as the ITS2 sequence of the internal transcribed spacer (ITS) were analysed in silver fir (Abies alba Mill.). The analysis also included characterization of the Arabidopsis-type of telomeric repeats in silver fir and in related species. The results were compared with results from other species of the Pinaceae, to evaluate phylogeny and chromosomal and molecular evolution in the Pinaceae. Integrated chromosomal data provided insights into chromosome and karyotype evolution in the Pinaceae. The evolutionary trend for GC-rich heterochromatic blocks seems to involve loss of blocks that are not associated with rDNA. Similarly, numerous large blocks of interstitial plant telomeric repeats that are typical for all analysed species of the genus Pinus were not observed in the evolutionarily younger genera, such as Abies, Picea and Larix. On the contrary, the majority of telomeric sequences in these three genera appeared confined to the chromosome ends. We confirmed the current position of Abies and Tsuga in subfamily Abietoideae and the position of Pinus in the subfamily Pinoideae based on ITS2 sequences. Pseudotsuga is placed together with Larix into the subfamily Laricoideae. We conclude that the current position of the genus Picea in the subfamily Abietoideae should be reconsidered and, possibly, the genus Picea should be reclassified as a separate subfamily, Piceoideae, as recently proposed.


Subject(s)
Abies/genetics , Genome, Plant , Pinaceae/genetics , Abies/classification , DNA, Ribosomal/genetics , Flow Cytometry , In Situ Hybridization, Fluorescence , Karyotyping , Phylogeny , Picea/classification , Picea/genetics , Pinaceae/classification , Polymerase Chain Reaction , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 5.8S/genetics , RNA, Ribosomal, 5S/genetics
5.
Plant Biol (Stuttg) ; 7(4): 397-404, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16025412

ABSTRACT

Given the paucity of information about genome size in the genus Centaurea, nuclear DNA content of 15 Centaurea taxa, belonging to four subgenera and six different sections, has been investigated for the first time. The sample concerns 21 populations from the Dalmatia region of Croatia. The 2C DNA content and GC percentage were assessed by flow cytometry and chromosome number was determined using standard methods. Genome size of studied Centaurea ranged from 2C=1.67 to 3.72 pg. These results were in accordance with chromosome number and especially with ploidy level that varies throughout this group; 2C DNA values ranged from 1.67 to 3.43 pg for diploid, and from 3.19 to 3.72 for polyploid taxa. No significant intraspecific variations of DNA amount were found between two subspecies of C. visiani and C. ragusina, nor between two varieties of C. gloriosa. However, some populations of C. glaberrima and C. cuspidata showed a significant difference in DNA amount. Three different basic chromosome numbers were observed in studied species (x=9, 10, and 11). The most frequent basic number was x=9. C. rupestris, C. ragusina ssp. ragusina, and C. r. ssp. lungensis possessed x=10 and C. tuberosa x=11. The species with a basic chromosome number of x=9 had a small genome size and the smallest chromosomes (on average 0.09 to 0.12 pg/chromosome) but frequently present polyploidy. Centaurea ragusina ssp. ragusina and C. r. ssp. lungensis had a mean base composition 41.3% GC.


Subject(s)
Centaurea/genetics , Chromosomes, Plant , DNA, Plant/analysis , Croatia , Genetic Variation , Genome, Plant , Karyotyping , Ploidies
6.
Plant Biol (Stuttg) ; 17(4): 775-86, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25683604

ABSTRACT

Plant genome size evolution is a very dynamic process: the ancestral genome of angiosperms was initially most likely small, which led to a tendency towards genome increase during evolution. However, findings in several angiosperm lineages demonstrate mechanisms that also led to genome size contraction. Recent molecular investigations on the Asteraceae genus Crepis suggest that several genomic reduction events have occurred during the evolution of the genus. This study focuses on the Mediterranean Crepis sect. Neglectoides, which includes three species with some of the smallest genomes within the whole genus. Crepis neglecta has the largest genome in sect. Neglectoides, approximately twice the size of the two species Crepis cretica and Crepis hellenica. Whereas C. cretica and C. hellencia are more closely related to each other than to C. neglecta the karyotypes of the latter species and C. cretica are similar, while that of C. hellenica differs considerably. Here, the karyotypic organisation of the three species is investigated with fluorescence in-situ hybridisation and studied in a molecular phylogenetic framework based on the nuclear markers Actin, CHR12, CPN60B, GPCR1 and XTH23. Our findings further corroborate the occurrence of genome size contraction in Crepis, and suggest that the difference in genome size between C. neglecta and C. cretica is mostly due to elimination of dispersed repetitive elements, whereas chromosomal reorganisation was involved in the karyotype formation of C. hellenica.


Subject(s)
Chromosomes, Plant/genetics , Crepis/genetics , Evolution, Molecular , Genome Size , Genome, Plant/genetics , Base Sequence , Chromosome Banding , Crepis/cytology , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genetic Markers/genetics , In Situ Hybridization, Fluorescence , Karyotype , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
7.
Theor Appl Genet ; 104(2-3): 505-512, 2002 Feb.
Article in English | MEDLINE | ID: mdl-12582725

ABSTRACT

Two closely related spruces, Picea abies and Picea omorika, a Balkan paleoendemic species, often share habitats, yet never hybridize in nature. The present study adresses their characteristics such as nuclear DNA content, base composition, heterochromatin and rDNA pattern. The genome size of P. abies was 10% larger than that of P. omorika when assessed by flow cytometry, respectively 2C=37.2 pg and 33.8 pg; although when estimated as total chromosome length it was virtually the same. The heterochromatin Chromomycin-A (CMA)/ DAPI fluorochrome banding patterns of both P. abies and P. omorikaare given here for the first time. Simultaneous FISH (fluorescent in situ hybridization) using 18S-26S and 5S rDNA probes revealed 16 18S rDNA sites in P. omorika, 12 18S rDNA sites in P. abies, and a single 5S rDNA locus in both species. The genomes have about 41% GC. The number and position of CMA/DAPI bands and rDNA loci provide good chromosome markers to clarify the karyotypes of the two species.

8.
Heredity (Edinb) ; 82 (Pt 3): 261-6, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10336700

ABSTRACT

The genome size and the base composition (GC%) of eight Hypochaeris species were determined by flow cytometry in order to establish the pattern of nuclear DNA variation within the genus. The species analysed showed an almost fivefold range of variation from 1.68 pg in H. cretensis to 8.10 pg in H. uniflora. This variation in DNA content is greater between taxonomic sections of Hypochaeris species than within a section. There was no correlation between 2C DNA content and GC% indicating that neither the GC fraction nor the AT fraction were preferentially associated with variation in genome size. Because there is little heterochromatin, these results show that it is interspersed repeated sequences that are most probably implicated in this variation. From phylogenetic analysis, it is likely that genome size has evolved by loss of DNA content in some lineages and by gain in one lineage from an ancestral genome which was probably similar to genomes of intermediate size in Hypochaeris.

9.
Plant Biol (Stuttg) ; 6(2): 140-6, 2004.
Article in English | MEDLINE | ID: mdl-15045664

ABSTRACT

Seven representatives of the genera Amphoricarpus, Chardinia, Siebera, and Xeranthemum, all of them closely related as demonstraded by molecular phylogeny, have been studied from a cytogenetic perspective. Morphometrical karyotype parameters were calculated and idiograms obtained. Fluorochrome banding was performed with chromomycin A (3) to identify GC-rich regions in the chromosomes. Fluorescence in situ hybridization allowed us to locate the sites of 18S-5.8S-26S and 5S rDNA. Silver nitrate staining was used to count the number of nucleoli and to detect the active nucleolar organizing regions. Systematic and evolutionary issues are addressed in the light of these data.


Subject(s)
Asteraceae/classification , Asteraceae/genetics , Chromosomes, Plant/genetics , Chromomycins , Chromosome Mapping , DNA, Plant/genetics , DNA, Ribosomal/genetics , Fluorescent Dyes , In Situ Hybridization, Fluorescence , Karyotyping , Phylogeny , RNA, Plant/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal, 18S/genetics
10.
Plant Biol (Stuttg) ; 13(1): 194-200, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21143741

ABSTRACT

To examine variation and taxonomic recognition of Pinus nigra (European black pine) at the intraspecific level, chromosomal distribution of 5S and 18S-5.8S-26S rDNA loci revealed by fluorescent in situ hybridisation (FISH) and fluorochrome banding with chromomycin A(3) and DAPI were analysed among allopatric populations belonging to different subspecies. Despite prevalent opinion on predominantly conserved and homogenous conifer karyotypes, several patterns were observed. Surprisingly, interstitial 18S rDNA loci and DAPI heterochromatin staining after FISH showed variations in distribution and localisation. Three subspecies shared a pattern with nine 18S rDNA loci (ssp. nigra, pallasiana and laricio) while ssp. dalmatica and salzmannii had eight rDNA loci. DAPI banding displayed two patterns, one with a high number of signals (ssp. nigra, pallasiana and dalmatica) and the other with a lower number of signals (ssp. salzmannii and laricio). We conclude that our results cannot provide proof for either classification scheme for the P. nigra complex, but rather demonstrate the variability of different heterochromatin fractions at the intraspecific level.


Subject(s)
Pinus/genetics , Africa, Northern , Chromosomes, Plant , Cytogenetic Analysis , DNA, Ribosomal/genetics , Europe , Genetic Loci , Genetics, Population , Karyotyping
11.
Heredity (Edinb) ; 94(4): 388-95, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15726113

ABSTRACT

The evolution of the chromosomal location of ribosomal RNA gene clusters and the organization of heterochromatin in the Drosophila melanogaster group were investigated using fluorescence in situ hybridization and DAPI staining to mitotic chromosomes. The investigation of 18 species (11 of which were being examined for the first time) belonging to the melanogaster and ananassae subgroups suggests that the ancestral configuration consists of one nucleolus organizer (NOR) on each sex chromosome. This pattern, which is conserved throughout the melanogaster subgroup, except in D. simulans and D. sechellia, was observed only in the ercepeae complex within the ananassae subgroup. Both sex-linked NORs must have been lost in the lineage leading to D. varians and in the ananassae and bipectinata complexes, whereas new sites, characterized by intra-species variation in hybridization signal size, appeared on the fourth chromosome related to heterochromatic rearrangements. Nucleolar material is thought to be required for sex chromosome pairing and disjunction in a variety of organisms including Drosophila. Thus, either remnant sequences, possibly intergenic spacer repeats, are still present in the sex chromosomes which have lost their NORs (as observed in D. simulans and D. sechellia), or an alternative mechanism has evolved.


Subject(s)
DNA, Ribosomal/genetics , Drosophila/genetics , Evolution, Molecular , Nucleolus Organizer Region/genetics , Phylogeny , Animals , Female , Male , X Chromosome/genetics , Y Chromosome/genetics
12.
Genome ; 38(4): 689-95, 1995 Aug.
Article in English | MEDLINE | ID: mdl-7672604

ABSTRACT

Four South American and two European species of Hypochoeris (Asteraceae) were studied using fluorochrome banding, and genome size was determined by flow cytometry, in order to obtain information about microevolution in this genus and about its primary origin. Fluorochrome banding patterns showed GC-rich repeated sequences, particularly around the nucleolar organizer regions. Few differences appeared among the South American species. Nevertheless, determination of nuclear DNA content and base composition revealed significant differences among these species. The phylogenetic position of Hypochoeris robertia, which has the smallest DNA content, is discussed with regard to chromosome evolution in this genus.


Subject(s)
Biological Evolution , Chromosome Banding , Genome, Plant , Plants/genetics , Fluorescent Dyes , In Situ Hybridization, Fluorescence , Karyotyping , Meiosis , Species Specificity
13.
Ann Bot ; 75(1): 95-100, 1995 Jan.
Article in English | MEDLINE | ID: mdl-21247917

ABSTRACT

Five populations of tetraploid Acacia heterophylla, endemic from La Réunion island, were compared together and with their Australian diploid relative A. melanoxylon for cytogenetic and DNA characteristics. A. melanoxylon (2n = 26) had 1·59 pg nuclear DNA; A. heterophylla (2n = 4x = 52) had double this value (3·19 pg), and there was no difference between populations within species. Both species had 39 % GC. Interchromosome connections were evident at metaphase and mitotic irregularities at anaphase were twice as frequent in A. heterophylla as in A. melanoxylon, again with no difference between populations within species. These results argue for a recent autotetraploid origin of A. heterophylla from A. melanoxylon. Yet, fluorochrome banding showed that in some A. heterophylla populations, GC-rich bands had slightly changed from the supposed ancestral pattern, probably by means of translocations involving parts of nuclear organizer areas. No clear relation was found between banding patterns and ecological factors.

14.
Protoplasma ; 221(3-4): 257-68, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12802633

ABSTRACT

In eudicot postmeiotic tetrads, apertures are usually joined in pairs in highly conserved areas. These appear to be located at the last points of contact persisting at the end of cytokinesis between the cytoplasm of the future microspores. In order to investigate the relationship between cytokinesis and aperture formation, aperture distribution within postmeiotic tetrads and the progression of meiosis were studied in Nicotiana tabacum cv. Ambalema. This variety (inbred line) produces about 85% tricolporate pollen and 15% tetracolporate pollen grains. In addition, about 7% of tetrads are composed of four equal-sized microspores and a supernumerary pseudomicrospore of small size and an equal proportion of tetrads exhibit unpaired apertures (these apertures are not joined in pairs within tetrads). Observation of cytokinesis indicates that both unpaired apertures and pseudomicrospores could result from the persistence of late communications between microsporocytes. Observations of tetrads indicate that an increase in the number of elements that are separated during cytokinesis is correlated with an increase in microspore aperture number. All data converge to support the hypothesis that aperture site determination is partly controlled by the number of walls formed to separate the different elements of the tetrad.


Subject(s)
Cell Wall/ultrastructure , Nicotiana/cytology , Pollen/ultrastructure , Cell Division , Meiosis , Seeds/cytology , Seeds/ultrastructure , Nicotiana/ultrastructure
15.
Mol Genet Genomics ; 265(2): 234-41, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11361333

ABSTRACT

Very similar genome sizes, similar karyotypes and heterochromatin organisation, and identical number/position of ribosomal loci characterise the common oak (Q. robur) and the cork oak (Q. suber), two distantly related oak species. Representational Difference Analysis (RDA) was used to subtract the genome of Q. suber from the genome of Q. robur in order to search for genome differentiation. A library of 400 clones (bearing RDA fragments) representing genome differences between the two species was obtained. Seven Q. robur-specific DNA sequences were analysed with respect to their molecular and chromosome organisation. All belong to the dispersed repetitive component of the genome, as revealed by Southern hybridisation and in situ hybridisation. They are present in the Q. robur genome in between 100 and 700 copies, and are distributed along the length of almost all chromosomes. A search for homologies between RDA fragments and sequences in Genbank revealed similarities of all RDA fragments with known retrotransposons. The RDA fragments were also tested for their presence/absence in the genomes of six additional oak species belonging to different phylogenetic groups, in order to examine the evolutionary dynamics of these DNA sequences.


Subject(s)
Evolution, Molecular , Genome, Plant , Rosales/genetics , Base Sequence , DNA, Plant , In Situ Hybridization, Fluorescence/methods , Molecular Sequence Data , Sequence Homology, Nucleic Acid
16.
Cytometry ; 14(6): 618-26, 1993.
Article in English | MEDLINE | ID: mdl-8404368

ABSTRACT

A novel procedure for calculating base-pair frequencies in whole genomes is reported. This has been developed during a study of the role of heterochromatin in microevolution. Closely related species of the Crepis praemorsa complex have similar karyotypes but for their heterochromatin. The changes in relative AT frequency between species have been attributed to heterochromatin sequences by in situ banding of chromosomes with two base-specific fluorochromes. The absolute genome size of species, measured by cytofluorometry, correlated positively with increased karyotypic heterochromatin, as did the proportion of AT bases in the DNA. However, the determination of base content has called for a curvilinear interpretation of data obtained with two base-specific fluorochromes (bisbenzimide Hoechst 33342 and mithramycin), in contrast to the commonly assumed but erroneous direct relationship between fluorescence intensity and base content. Essentially, the fluorochromes' requirements for a sequence of certain base-pairs lead to the notion of Coefficients of Overspecificity: the result is a simple formula for calculating the AT proportion in a genome relative to a reference species from cytometric data, taking account of ligand binding statistics. These statistics and probabilities of oligonucleotide binding are essentially the same.


Subject(s)
Base Composition , Fluorometry/methods , Genome , Heterochromatin/chemistry , Plants/genetics , Adenine/analysis , Benzimidazoles , Cell Nucleus/chemistry , Cytosine/analysis , DNA/analysis , DNA/genetics , Flow Cytometry/methods , Guanine/analysis , Karyotyping , Mathematics , Plicamycin , Thymine/analysis
17.
Mol Biol Evol ; 15(3): 345-54, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9501501

ABSTRACT

Sequences of the internal transcribed spacers (ITSs) of 18S-26S nuclear ribosomal DNA were used to resolve phylogenetic relationships and chromosomal evolution among 14 species of the genus Hypochaeris (Asteraceae). Parsimony analysis was performed for phylogenetic reconstruction, and sequence divergence between species was estimated. Pairwise sequence divergence within Hypochaeris genus ranged from 0% to 25.68% in ITS1 and from 0% to 17.08% in ITS2. A highly resolved strict-consensus tree was obtained that showed the phylogenetically useful information of ITS sequences within the genus Hypochaeris. Four clades could be well distinguished, one of them formed by the single species H. robertia, which appeared to be the most related to the ancestral species of the genus. The results agree with taxonomic classification based on morphological data, and the tree obtained, when indels are coded as missing data, aggregates the species having the same chromosome number, except in one clade. According to the ITS phylogenetic tree, the chromosomal evolution within the genus Hypochaeris conflicts with the previous hypothesis and suggests that karyotype evolution in Hypochaeris was accompanied with both decreasing and increasing dysploidy, probably with several chromosomal rearrangements, and from an ancestral basic chromosome number of 4 or 5.


Subject(s)
Asteraceae/genetics , DNA, Ribosomal/genetics , Evolution, Molecular , Phylogeny , Base Sequence , Chromosomes/genetics , DNA, Plant/genetics , Genetic Variation/genetics , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA
18.
Plant Cell Rep ; 22(1): 59-63, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12835994

ABSTRACT

The 2C DNA content and base composition of five Pinus (2 n=24) species and two Pinus subspecies from the Balkan region have been estimated by flow cytometry. P. heldreichii (five populations) and P. peuce (one population) were assessed for the first time, as also were subspecies of P. nigra (three populations-two of subspecies nigra and one of subspecies dalmatica) along with P. sylvestris, and P. mugo from the same region. The 2C DNA values of these Pinus ranged from 42.5 pg to 54.9 pg (41.7-53.8 x 10(9)bp), and the base composition was quite stable (about 39.5% GC). Significant differences were observed between two subspecies of P. nigra and even between two populations of subsp. nigra. The two other species (P. sylvestris and P. mugo) had 2C values of 42.5 pg and 42.8 pg, respectively, while that of P. peuce was 54.9 pg. These genome sizes are in accordance with published values except for P. sylvestris, which was 20% below estimates made by other authors.


Subject(s)
DNA, Plant/genetics , Genome, Plant , Pinus/genetics , Base Composition/genetics , Bosnia and Herzegovina , Flow Cytometry , Triticum/genetics
19.
Plant Sci ; 160(2): 301-313, 2001 Jan 05.
Article in English | MEDLINE | ID: mdl-11164602

ABSTRACT

Solanum aethiopicum is reported to carry resistance to bacterial wilt disease caused by Ralstonia solanacearum, which is one of the most important diseases of eggplant (Solanum melongena). These two species can sexually be crossed but the fertility of their progeny is very low. In order to transfer the resistance and improve the fertility, somatic hybrids between S. melongena cv. Dourga and two groups of S. aethiopicum were produced by electrical fusion of mesophyll protoplasts. Thirty hybrid plants were regenerated. When transferred to the greenhouse and transplanted in the field, they were vigorous and showed intermediate morphological traits. Their ploidy level was determined by DNA analysis through flow cytometry, and their hybrid nature was confirmed by examining isozymes and RAPDs patterns. Chloroplast DNA microsatellite analysis revealed that 18 hybrids had the chloroplasts of the eggplant and 12 those of the wild species. The parents and 16 hybrids were evaluated in the field for their fertility and resistance to bacterial wilt using a race 1, biovar 3 strain of R. solanacearum. All hybrids were fertile and set fruit with viable seeds. Their yield was either intermediate or as high as that of the cultivated eggplant. Both groups of S. aethiopicum were found tolerant to R. solanacearum, as about 50% of plants wilted after 8 weeks. The cultivated eggplant was susceptible with 100% of wilted plants 2 weeks after inoculation. All somatic hybrids tested were as tolerant as the wild species, except six hybrids showing a better level of resistance.

SELECTION OF CITATIONS
SEARCH DETAIL