Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Article in English | MEDLINE | ID: mdl-34095713

ABSTRACT

Although the majority of patients with metastatic non-small-cell lung cancer (mNSCLC) lacking a detectable targetable mutation will receive pembrolizumab-based therapy in the frontline setting, predicting which patients will experience a durable clinical benefit (DCB) remains challenging. MATERIALS AND METHODS: Patients with mNSCLC receiving pembrolizumab monotherapy or in combination with chemotherapy underwent a 74-gene next-generation sequencing panel on blood samples obtained at baseline and at 9 weeks. The change in circulating tumor DNA levels on-therapy (molecular response) was quantified using a ratio calculation with response defined by a > 50% decrease in mean variant allele fraction. Patient response was assessed using RECIST 1.1; DCB was defined as complete or partial response or stable disease that lasted > 6 months. Progression-free survival and overall survival were recorded. RESULTS: Among 67 patients, 51 (76.1%) had > 1 variant detected at a variant allele fraction > 0.3% and thus were eligible for calculation of molecular response from paired baseline and 9-week samples. Molecular response values were significantly lower in patients with an objective radiologic response (log mean 1.25% v 27.7%, P < .001). Patients achieving a DCB had significantly lower molecular response values compared to patients with no durable benefit (log mean 3.5% v 49.4%, P < .001). Molecular responders had significantly longer progression-free survival (hazard ratio, 0.25; 95% CI, 0.13 to 0.50) and overall survival (hazard ratio, 0.27; 95% CI, 0.12 to 0.64) compared with molecular nonresponders. CONCLUSION: Molecular response assessment using circulating tumor DNA may serve as a noninvasive, on-therapy predictor of response to pembrolizumab-based therapy in addition to standard of care imaging in mNSCLC. This strategy requires validation in independent prospective studies.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Circulating Tumor DNA/blood , High-Throughput Nucleotide Sequencing , Lung Neoplasms/blood , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Progression-Free Survival , Survival Rate , Treatment Outcome
2.
Sci Rep ; 10(1): 12235, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699385

ABSTRACT

The most prevalent microdeletion in humans occurs at 22q11.2, a region rich in chromosome-specific low copy repeats (LCR22s). The structure of this region has defied elucidation due to its size, regional complexity, and haplotype diversity, and is not well represented in the human genome reference. Most individuals with 22q11.2 deletion syndrome (22q11.2DS) carry a de novo hemizygous deletion of ~ 3 Mbp occurring by non-allelic homologous recombination (NAHR) mediated by LCR22s. In this study, optical mapping has been used to elucidate LCR22 structure and variation in 88 individuals in thirty 22q11.2DS families to uncover potential risk factors for germline rearrangements leading to 22q11.2DS offspring. Families were optically mapped to characterize LCR22 structures, NAHR locations, and genomic signatures associated with the deletion. Bioinformatics analyses revealed clear delineations between LCR22 structures in normal and deletion-containing haplotypes. Despite no explicit whole-haplotype predisposing configurations being identified, all NAHR events contain a segmental duplication encompassing FAM230 gene members suggesting preferred recombination sequences. Analysis of deletion breakpoints indicates that preferred recombinations occur between FAM230 and specific segmental duplication orientations within LCR22A and LCR22D, ultimately leading to NAHR. This work represents the most comprehensive analysis of 22q11.2DS NAHR events demonstrating completely contiguous LCR22 structures surrounding and within deletion breakpoints.


Subject(s)
Chromosomes, Human, Pair 22/genetics , DiGeorge Syndrome/genetics , Homologous Recombination/genetics , Segmental Duplications, Genomic/genetics , Alleles , Chromosome Deletion , Chromosome Mapping/methods , Female , Genome, Human/genetics , Haplotypes/genetics , Humans , Male
3.
Clin Cancer Res ; 26(10): 2354-2361, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32102950

ABSTRACT

PURPOSE: The role of plasma-based tumor mutation burden (pTMB) in predicting response to pembrolizumab-based first-line standard-of-care therapy for metastatic non-small cell lung cancer (mNSCLC) has not been explored. EXPERIMENTAL DESIGN: A 500-gene next-generation sequencing panel was used to assess pTMB. Sixty-six patients with newly diagnosed mNSCLC starting first-line pembrolizumab-based therapy, either alone or in combination with chemotherapy, were enrolled (Clinicaltrial.gov identifier: NCT03047616). Response was assessed using RECIST 1.1. Associations were made for patient characteristics, 6-month durable clinical benefit (DCB), progression-free survival (PFS), and overall survival (OS). RESULTS: Of 66 patients, 52 (78.8%) were pTMB-evaluable. Median pTMB was 16.8 mutations per megabase (mut/Mb; range, 1.9-52.5) and was significantly higher for patients achieving DCB compared with no durable benefit (21.3 mut/Mb vs. 12.4 mut/Mb, P = 0.003). For patients with pTMB ≥ 16 mut/Mb, median PFS was 14.1 versus 4.7 months for patients with pTMB < 16 mut/Mb [HR, 0.30 (0.16-0.60); P < 0.001]. Median OS for patients with pTMB ≥ 16 was not reached versus 8.8 months for patients with pTMB < 16 mut/Mb [HR, 0.48 (0.22-1.03); P = 0.061]. Mutations in ERBB2 exon 20, STK11, KEAP1, or PTEN were more common in patients with no DCB. A combination of pTMB ≥ 16 and absence of negative predictor mutations was associated with PFS [HR, 0.24 (0.11-0.49); P < 0.001] and OS [HR, 0.31 (0.13-0.74); P = 0.009]. CONCLUSIONS: pTMB ≥ 16 mut/Mb is associated with improved PFS after first-line standard-of-care pembrolizumab-based therapy in mNSCLC. STK11/KEAP1/PTEN and ERBB2 mutations may help identify pTMB-high patients unlikely to respond. These results should be validated in larger prospective studies.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung Neoplasms/blood , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Metastasis , Predictive Value of Tests , Prospective Studies , Survival Rate , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL