Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L27-L40, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31617729

ABSTRACT

Enhanced central chemoreflex (CC) gain is observed in volume overload heart failure (HF) and is correlated with autonomic dysfunction and breathing disorders. The aim of this study was to determine the role of the CC in the development of respiratory and autonomic dysfunction in HF. Volume overload was surgically created to induce HF in male Sprague-Dawley rats. Radiotelemetry transmitters were implanted for continuous monitoring of blood pressure and heart rate. After recovering from surgery, conscious unrestrained rats were exposed to episodic hypercapnic stimulation [EHS; 10 cycles/5 min, inspiratory fraction of carbon dioxide (FICO2) 7%] in a whole body plethysmograph for recording of cardiorespiratory function. To determine the contribution of CC to cardiorespiratory variables, selective ablation of chemoreceptor neurons within the retrotrapezoid nucleus (RTN) was performed via injection of saporin toxin conjugated to substance P (SSP-SAP). Vehicle-treated rats (HF+Veh and Sham+Veh) were used as controls for SSP-SAP experiments. Sixty minutes post-EHS, minute ventilation was depressed in sham animals relative to HF animals (ΔV̇e: -5.55 ± 2.10 vs. 1.24 ± 1.35 mL/min 100 g, P < 0.05; Sham+Veh vs. HF+Veh). Furthermore, EHS resulted in autonomic imbalance, cardiorespiratory entrainment, and ventilatory disturbances in HF+Veh but not Sham+Veh rats, and these effects were significantly attenuated by SSP-SAP treatment. Also, the apnea-hypopnea index (AHI) was significantly lower in HF+SSP-SAP rats compared with HF+Veh rats (AHI: 5.5 ± 0.8 vs. 14.4 ± 1.3 events/h, HF+SSP-SAP vs. HF+Veh, respectively, P < 0.05). Finally, EHS-induced respiratory-cardiovascular coupling in HF rats depends on RTN chemoreceptor neurons because it was reduced by SSP-SAP treatment. Overall, EHS triggers ventilatory plasticity and elicits cardiorespiratory abnormalities in HF that are largely dependent on RTN chemoreceptor neurons.


Subject(s)
Autonomic Nervous System Diseases/physiopathology , Central Nervous System/physiopathology , Chemoreceptor Cells/metabolism , Heart Failure/physiopathology , Neurons/physiology , Respiration Disorders/physiopathology , Animals , Autonomic Nervous System Diseases/metabolism , Blood Pressure/physiology , Central Nervous System/metabolism , Heart Failure/metabolism , Heart Rate/physiology , Hypercapnia/metabolism , Hypercapnia/physiopathology , Male , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Respiration , Respiration Disorders/metabolism
2.
Am J Physiol Lung Cell Mol Physiol ; 317(3): L402-L413, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31242022

ABSTRACT

Active expiration (AE) is part of the breathing phase; it is conditional and occurs when we increase our metabolic demand, such as during hypercapnia, hypoxia, or exercise. The parafacial respiratory group (pFRG) is involved in AE. Data from the literature suggest that excitatory and the absence of inhibitory inputs to the pFRG are necessary to determine AE. However, the source of the inputs to the pFRG that trigger AE remains unclear. We show in adult urethane-anesthetized Wistar rats that the pharmacological inhibition of the medial aspect of the nucleus of the solitary tract (mNTS) or the rostral aspect of the pedunculopontine tegmental nucleus (rPPTg) is able to generate AE. In addition, direct inhibitory projection from the mNTS or indirect cholinergic projection from the rPPTg is able to contact pFRG to trigger AE. The inhibition of the mNTS or the rPPTg under conditions of high metabolic demand, such as hypercapnia (9-10% CO2), did not affect the AE. The present results suggest for the first time that inhibitory sources from the mNTS and a cholinergic pathway from the rPPTg, involving M2/M4 muscarinic receptors, could be important sources to modulate and sustain AE.


Subject(s)
Exhalation/physiology , Hypercapnia/metabolism , Medulla Oblongata/metabolism , Neurons/metabolism , Animals , Hypercapnia/physiopathology , Male , Rats, Wistar , Respiration
3.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L891-L909, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30188747

ABSTRACT

The retrotrapezoid nucleus (RTN) contains chemosensitive cells that distribute CO2-dependent excitatory drive to the respiratory network. This drive facilitates the function of the respiratory central pattern generator (rCPG) and increases sympathetic activity. It is also evidenced that during hypercapnia, the late-expiratory (late-E) oscillator in the parafacial respiratory group (pFRG) is activated and determines the emergence of active expiration. However, it remains unclear the microcircuitry responsible for the distribution of the excitatory signals to the pFRG and the rCPG in conditions of high CO2. Herein, we hypothesized that excitatory inputs from chemosensitive neurons in the RTN are necessary for the activation of late-E neurons in the pFRG. Using the decerebrated in situ rat preparation, we found that lesions of neurokinin-1 receptor-expressing neurons in the RTN region with substance P-saporin conjugate suppressed the late-E activity in abdominal nerves (AbNs) and sympathetic nerves (SNs) and attenuated the increase in phrenic nerve (PN) activity induced by hypercapnia. On the other hand, kynurenic acid (100 mM) injections in the pFRG eliminated the late-E activity in AbN and thoracic SN but did not modify PN response during hypercapnia. Iontophoretic injections of retrograde tracer into the pFRG of adult rats revealed labeled phox2b-expressing neurons within the RTN. Our findings are supported by mathematical modeling of chemosensitive and late-E populations within the RTN and pFRG regions as two separate but interacting populations in a way that the activation of the pFRG late-E neurons during hypercapnia require glutamatergic inputs from the RTN neurons that intrinsically detect changes in CO2/pH.


Subject(s)
Cell Nucleus/physiology , Exhalation/physiology , Neurons/physiology , Sympathetic Nervous System/physiopathology , Animals , Carbon Dioxide/metabolism , Cell Nucleus/metabolism , Hydrogen-Ion Concentration , Hypercapnia/metabolism , Hypercapnia/physiopathology , Male , Neurons/metabolism , Phrenic Nerve/metabolism , Phrenic Nerve/physiopathology , Rats , Rats, Wistar , Receptors, Neurokinin-1/metabolism , Sympathetic Nervous System/metabolism
4.
J Endocrinol ; 255(2): 75-90, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35993424

ABSTRACT

Recent studies indicated an important role of connexins, gap junction proteins, in the regulation of metabolism. However, most of these studies focused on the glial expression of connexins, whereas the actions of connexins in neurons are still poorly investigated. Thus, the present study had the objective to investigate the possible involvement of gap junctions, and in particular connexin 43 (CX43), for the central regulation of energy homeostasis. Initially, we demonstrated that hypothalamic CX43 expression was suppressed in fasted mice. Using whole-cell patch-clamp recordings, we showed that pharmacological blockade of gap junctions induced hyperpolarization and decreased the frequency of action potentials in 50-70% of agouti-related protein (AgRP)-expressing neurons, depending on the blocker used (carbenoxolone disodium, TAT-Gap19 or Gap 26). When recordings were performed with a biocytin-filled pipette, this intercellular tracer was detected in surrounding cells. Then, an AgRP-specific CX43 knockout (AgRPΔCX43) mouse was generated. AgRPΔCX43 mice exhibited no differences in body weight, adiposity, food intake, energy expenditure and glucose homeostasis. Metabolic responses to 24 h fasting or during refeeding were also not altered in AgRPΔCX43 mice. However, AgRPΔCX43 male, but not female mice, exhibited a partial protection against high-fat diet-induced obesity, even though no significant changes in energy intake or expenditure were detected. In summary, our findings indicate that gap junctions regulate the activity of AgRP neurons, and AgRP-specific CX43 ablation is sufficient to mildly prevent diet-induced obesity specifically in males.


Subject(s)
Connexin 43 , Obesity , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Animals , Connexin 43/metabolism , Connexins/genetics , Connexins/metabolism , Diet, High-Fat , Gap Junctions/metabolism , Male , Mice , Neurons/metabolism , Obesity/etiology , Obesity/metabolism
5.
Elife ; 92020 01 23.
Article in English | MEDLINE | ID: mdl-31971507

ABSTRACT

Breathing results from the interaction of two distinct oscillators: the pre-Bötzinger Complex (preBötC), which drives inspiration; and the lateral parafacial region (pFRG), which drives active expiration. The pFRG is silent at rest and becomes rhythmically active during the stimulation of peripheral chemoreceptors, which also activates adrenergic C1 cells. We postulated that the C1 cells and the pFRG may constitute functionally distinct but interacting populations for controlling expiratory activity during hypoxia. We found in rats that: a) C1 neurons are activated by hypoxia and project to the pFRG region; b) active expiration elicited by hypoxia was blunted after blockade of ionotropic glutamatergic receptors at the level of the pFRG; and c) selective depletion of C1 neurons eliminated the active expiration elicited by hypoxia. These results suggest that C1 cells may regulate the respiratory cycle, including active expiration, under hypoxic conditions.


Subject(s)
Chemoreceptor Cells/metabolism , Exhalation/physiology , Neurons/physiology , Animals , Catecholamines/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Glutamates/metabolism , Hypoxia/metabolism , Kynurenic Acid/pharmacology , Male , Rats , Rats, Wistar , Receptors, Adrenergic/metabolism , Receptors, Ionotropic Glutamate/antagonists & inhibitors , Respiration
6.
Respir Physiol Neurobiol ; 227: 9-22, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-26900003

ABSTRACT

The rostroventrolateral medulla contains two functional neuronal populations: (1) the parafacial respiratory group (pFRG) neurons and (2) the chemosensitive retrotrapezoid nucleus (RTN) neurons. Using anatomical and physiological techniques, we investigated the role of the RTN/pFRG in CO2-induced active expiration (AE) in urethane-anesthetized rats. Anterograde tracing using biotinylated dextran amine (BDA) revealed dense neuronal projections emanating from the RTN/pFRG to the caudal ventral respiratory group (cVRG), 60% of which contained vesicular glutamate transporter-2. The minority (16%) of the RTN projections to the cVRG emanated from Phox2b positive neurons. Hypercapnia (10% CO2) increased DiaEMG and elicited AbdEMG activity. Bilateral injections of muscimol (2mM) into the RTN/pFRG reduced the activation of DiaEMG (23±4%) and abolished AE-induced by chemoreflex stimulation. Taken together, these results support the presence of direct excitatory projections from RTN/pFRG neurons to cVRG expiratory premotor neurons, playing a role in the generation/modulation of AE.


Subject(s)
Exhalation/physiology , Medulla Oblongata/cytology , Medulla Oblongata/physiology , Neurons/cytology , Neurons/physiology , Abdomen/physiology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Diaphragm/drug effects , Diaphragm/physiology , Exhalation/drug effects , GABA-A Receptor Agonists/pharmacology , Homeodomain Proteins/metabolism , Hypercapnia/pathology , Hypercapnia/physiopathology , Inhalation/drug effects , Inhalation/physiology , Male , Medulla Oblongata/drug effects , Motor Cortex/cytology , Motor Cortex/physiology , Muscimol/pharmacology , Neurons/drug effects , Physical Stimulation , Rats, Wistar , Reflex/drug effects , Reflex/physiology , Transcription Factors/metabolism , Vesicular Glutamate Transport Protein 2/metabolism
7.
Neuroscience ; 328: 9-21, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27126558

ABSTRACT

The Kölliker-Fuse (KF) region, located in the dorsolateral pons, projects to several brainstem areas involved in respiratory regulation, including the chemoreceptor neurons within the retrotrapezoid nucleus (RTN). Several lines of evidence indicate that the pontine KF region plays an important role in the control of the upper airways for the maintenance of appropriate airflow to and from the lungs. Specifically, we hypothesized that the KF region is involved in mediating the response of the hypoglossal motor activity to central respiratory chemoreflex activation and to stimulation of the chemoreceptor neurons within the RTN region. To test this hypothesis, we combined immunohistochemistry and physiological experiments. We found that in the KF, the majority of biotinylated dextran amine (BDA)-labeled axonal varicosities contained detectable levels of vesicular glutamate transporter-2 (VGLUT2), but few contained glutamic acid decarboxylase-67 (GAD67). The majority of the RTN neurons that were FluorGold (FG)-immunoreactive (i.e., projected to the KF) contained hypercapnia-induced Fos, but did not express tyrosine hydroxylase. In urethane-anesthetized sino-aortic denervated and vagotomized male Wistar rats, hypercapnia (10% CO2) or N-methyl-d-aspartate (NMDA) injection (0.1mM) in the RTN increased diaphragm (DiaEMG) and genioglossus muscle (GGEMG) activities and elicited abdominal (AbdEMG) activity. Bilateral injection of muscimol (GABA-A agonist; 2mM) into the KF region reduced the increase in DiaEMG and GGEMG produced by hypercapnia or NMDA into the RTN. Our data suggest that activation of chemoreceptor neurons in the RTN produces a significant increase in the genioglossus muscle activity and the excitatory pathway is dependent on the neurons located in the dorsolateral pontine KF region.


Subject(s)
Chemoreceptor Cells/physiology , Medulla Oblongata/physiology , Pons/physiology , Respiration , Tongue/physiology , Animals , Chemoreceptor Cells/cytology , Diaphragm/innervation , Diaphragm/physiology , Glutamate Decarboxylase/metabolism , Glutamic Acid/metabolism , Hypercapnia/pathology , Hypercapnia/physiopathology , Male , Medulla Oblongata/cytology , Muscimol/pharmacology , N-Methylaspartate/pharmacology , Neurotransmitter Agents/pharmacology , Pons/cytology , Pons/drug effects , Rats, Wistar , Receptors, GABA-A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Respiration/drug effects , Tongue/innervation , Vesicular Glutamate Transport Protein 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL