Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Neurooncol ; 166(2): 303-307, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38194196

ABSTRACT

PURPOSE: The expression of PD-L1 in high-grade meningiomas made it a potential target for immunotherapy research in refractory cases. Several prospective studies in this field are still on going. We sought to retrospectively investigate the effects of check-point inhibitors (CI) on meningiomas that had been naïve to either surgical or radiation approaches by following incidental meningiomas found during treatment with CI for various primary metastatic cancers. METHODS: We used the NYU Perlmutter Cancer Center Data Hub to find patients treated by CI for various cancers, who also had serial computerized-tomography (CT) or magnetic-resonance imaging (MRI) reports of intracranial meningiomas. Meningioma volumetric measurements were compared between the beginning and end of the CI treatment period. Patients treated with chemotherapy during this period were excluded. RESULTS: Twenty-five patients were included in our study, of which 14 (56%) were on CI for melanoma, 5 (20%) for non-small-cell lung cancer and others. CI therapies included nivolumab (n = 15, 60%), ipilimumab (n = 11, 44%) and pembrolizumab (n = 9, %36), while 9 (36%) were on ipilimumab/nivolumab combination. We did not find any significant difference between tumor volumes before and after treatment with CI (1.31 ± 0.46 vs. 1.34 ± 0.46, p=0.8, respectively). Among patients beyond 1 year of follow-up (n = 13), annual growth was 0.011 ± 0.011 cm3/year. Five patients showed minor volume reduction of 0.12 ± 0.10 cm3 (21 ± 6% from baseline). We did not find significant predictors of tumor volume reduction. CONCLUSION: Check-point inhibitors may impact the natural history of meningiomas. Additional research is needed to define potential clinical indications and treatment goals.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Meningeal Neoplasms , Meningioma , Humans , Meningioma/diagnostic imaging , Meningioma/therapy , Meningioma/pathology , Nivolumab/therapeutic use , Ipilimumab , Retrospective Studies , Prospective Studies , Immunotherapy , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/therapy , Meningeal Neoplasms/pathology
2.
J Neurooncol ; 168(1): 99-109, 2024 May.
Article in English | MEDLINE | ID: mdl-38630386

ABSTRACT

PURPOSE: Although ongoing studies are assessing the efficacy of new systemic therapies for patients with triple negative breast cancer (TNBC), the overwhelming majority have excluded patients with brain metastases (BM). Therefore, we aim to characterize systemic therapies and outcomes in a cohort of patients with TNBC and BM managed with stereotactic radiosurgery (SRS) and delineate predictors of increased survival. METHODS: We used our prospective patient registry to evaluate data from 2012 to 2023. We included patients who received SRS for TNBC-BM. A competing risk analysis was conducted to assess local and distant control. RESULTS: Forty-three patients with 262 tumors were included. The median overall survival (OS) was 16 months (95% CI 13-19 months). Predictors of increased OS after initial SRS include Breast GPA score > 1 (p < 0.001) and use of immunotherapy such as pembrolizumab (p = 0.011). The median time on immunotherapy was 8 months (IQR 4.4, 11.2). The median time to new CNS lesions after the first SRS treatment was 17 months (95% CI 12-22). The cumulative rate for development of new CNS metastases after initial SRS at 6 months, 1 year, and 2 years was 23%, 40%, and 70%, respectively. Thirty patients (70%) underwent multiple SRS treatments, with a median time of 5 months (95% CI 0.59-9.4 months) for the appearance of new CNS metastases after second SRS treatment. CONCLUSIONS: TNBC patients with BM can achieve longer survival than might have been previously anticipated with median survival now surpassing one year. The use of immunotherapy is associated with increased median OS of 23 months.


Subject(s)
Brain Neoplasms , Radiosurgery , Triple Negative Breast Neoplasms , Humans , Female , Brain Neoplasms/secondary , Brain Neoplasms/mortality , Middle Aged , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/therapy , Aged , Prospective Studies , Adult , Survival Rate , Follow-Up Studies , Prognosis , Treatment Outcome , Registries
3.
J Neurooncol ; 164(2): 387-396, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37691032

ABSTRACT

PURPOSE: Patients with EGFR-mutated NSCLC represent a unique subset of lung cancer patients with distinct clinical and molecular characteristics. Previous studies have shown a higher incidence of brain metastases (BM) in this subgroup of patients, and neurologic death has been reported to be as high as 40% and correlates with leptomeningeal disease (LMD). METHODS: Between 2012 and 2021, a retrospective review of our prospective registry identified 606 patients with BM from NSCLC, with 170 patients having an EGFR mutation. Demographic, clinical, radiographic, and treatment characteristics were correlated to the incidence of LMD and survival. RESULTS: LMD was identified in 22.3% of patients (n = 38) at a median follow-up of 19 (2-98) months from initial SRS. Multivariate regression analysis showed targeted therapy and a cumulative number of metastases as significant predictors of LMD (p = 0.034, HR = 0.44), (p = .04, HR = 1.02). The median survival time after SRS of the 170 patients was 24 months (CI 95% 19.1-28.1). In a multivariate Cox regression analysis, RPA, exon 19 deletion, and osimertinib treatment were significant predictors of overall survival. The cumulative incidence of neurological death at 2 and 4 years post initial stereotactic radiosurgery (SRS) was 8% and 11%, respectively, and correlated with LMD. CONCLUSION: The study shows that current-generation targeted therapy for EGFR-mutated NSCLC patients may prevent the development and progression of LMD, leading to improved survival outcomes. Nevertheless, LMD is associated with poor outcomes and neurologic death, making innovative strategies to treat LMD essential.

4.
J Appl Clin Med Phys ; 24(3): e13856, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36628586

ABSTRACT

INTRODUCTION: Clinical trial data comparing outcomes after administration of stereotactic radiosurgery (SRS) or whole-brain radiotherapy (WBRT) to patients with brain metastases (BM) suggest that SRS better preserves cognitive function and quality of life without negatively impacting overall survival. Here, we estimate the maximum number of BM that can be treated using single and multi-session SRS while limiting the dose of radiation delivered to normal brain tissue to that associated with WBRT. METHODS: Multiple-tumor SRS was simulated using a Monte Carlo - type approach and a pre-calculated dose kernel method. Tumors with diameters ≤36 mm were randomly placed throughout the contoured brain parenchyma until the brain mean dose reached 3 Gy, equivalent to the radiation dose delivered during a single fraction of a standard course of WBRT (a total dose of 30 Gy in 10 daily fractions of 3 Gy). Distribution of tumor sizes, dose coverage, selectivity, normalization, and maximum dose data used in the simulations were based on institutional clinical metastases data. RESULTS: The mean number of tumors treated, mean volume of healthy brain tissue receiving > 12 Gy (V12) per tumor, and total tumor volume treated using mixed tumor size distributions were 12.7 ± 4.2, 2.2 cc, and 12.9 cc, respectively. Thus, we estimate that treating 12-13 tumors per day over 10 days would deliver the dose of radiation to healthy brain tissue typically associated with a standard course of WBRT. CONCLUSION: Although in clinical practice, treatment with SRS is often limited to patients with ≤15 BM, our findings suggest that many more lesions could be targeted while still minimizing the negative impacts on quality of life and neurocognition often associated with WBRT. Results from this in silico analysis require clinical validation.


Subject(s)
Brain Neoplasms , Radiosurgery , Humans , Brain , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Brain Neoplasms/secondary , Cranial Irradiation/methods , Quality of Life , Radiation Dosage , Radiosurgery/methods , Retrospective Studies
5.
J Neurooncol ; 158(3): 471-480, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35665462

ABSTRACT

PURPOSE: New therapies for melanoma have been associated with increasing survival expectations, as opposed to the dismal outcomes of only a decade ago. Using a prospective registry, we aimed to define current survival goals for melanoma patients with brain metastases (BM), based on state-of-the-art multimodality care. METHODS: We reviewed 171 melanoma patients with BM receiving stereotactic radiosurgery (SRS) who were followed with point-of-care data collection between 2012 and 2020. Clinical, molecular and imaging data were collected, including systemic treatment and radiosurgical parameters. RESULTS: Mean age was 63 ± 15 years, 39% were female and 29% had BRAF-mutated tumors. Median overall survival after radiosurgery was 15.7 months (95% Confidence Interval 11.4-27.7) and 25 months in patients managed since 2015. Thirty-two patients survived [Formula: see text] 5 years from their initial SRS. BRAF mutation-targeted therapies showed a survival advantage in comparison to chemotherapy (p = 0.009), but not to immunotherapy (p = 0.09). In a multivariable analysis, both immunotherapy and the number of metastases at 1st SRS were predictors of long-term survival ([Formula: see text] 5 years) from initial SRS (p = 0.023 and p = 0.018, respectively). Five patients (16%) of the long-term survivors required no active treatment for [Formula: see text] 5 years. CONCLUSION: Long-term survival in patients with melanoma BM is achievable in the current era of SRS combined with immunotherapies. For those alive [Formula: see text] 5 years after first SRS, 16% had been also off systemic or local brain therapy for over 5 years. Given late recurrences of melanoma, caution is warranted, however prolonged survival off active treatment in a subset of our patients raises the potential for cure.


Subject(s)
Brain Neoplasms , Melanoma , Radiosurgery , Aged , Brain Neoplasms/pathology , Female , Humans , Immunotherapy , Male , Melanoma/pathology , Middle Aged , Molecular Targeted Therapy , Radiosurgery/methods , Retrospective Studies
6.
J Appl Clin Med Phys ; 21(10): 122-131, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32965754

ABSTRACT

The purpose of this feasibility study is to develop a fully automated procedure capable of generating treatment plans with multiple fractionation schemes to improve speed, robustness, and standardization of plan quality. A fully automated script was implemented for spinal stereotactic radiosurgery/stereotactic body radiation therapy (SRS/SBRT) plan generation using Eclipse v15.6 API. The script interface allows multiple dose/fractionation plan requests, planning target volume (PTV) expansions, as well as information regarding distance/overlap between spinal cord and targets to drive decision-making. For each requested plan, the script creates the course, plans, field arrangements, and automatically optimizes and calculates dose. The script was retrospectively applied to ten computed tomography (CT) scans of previous cervical, thoracic, and lumbar spine SBRT patients. Three plans were generated for each patient - simultaneous integrated boost (SIB) 1800/1600 cGy to gross tumor volume (GTV)/PTV in one fraction; SIB 2700/2100 cGy to GTV/PTV in three fractions; and 3000 cGy to PTV in five fractions. Plan complexity and deliverability patient-specific quality assurance (QA) was performed using ArcCHECK with an Exradin A16 chamber inserted. Dose objectives were met for all organs at risk (OARs) for each treatment plan. Median target coverage was GTV V100% = 87.3%, clinical target volume (CTV) V100% = 95.7% and PTV V100% = 88.0% for single fraction plans; GTV V100% = 95.6, CTV V100% = 99.6% and PTV V100% = 97.2% for three fraction plans; and GTV V100% = 99.6%, CTV V100% = 99.1% and PTV V100% = 97.2% for five fraction plans. All plans (n = 30) passed patient-specific QA (>90%) at 2%/2 mm global gamma. A16 chamber dose measured at isocenter agreed with planned dose within 3% for all cases. Automatic planning for spine SRS/SBRT through scripting increases efficiency, standardizes plan quality and approach, and provides a tool for target coverage comparison of different fractionation schemes without the need for additional resources.


Subject(s)
Radiosurgery , Automation , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Retrospective Studies
7.
J Neurooncol ; 134(1): 139-143, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28536993

ABSTRACT

Leptomeningeal disease (LMD) is well described in patients with brain metastases, presenting symptomatically in approximately 5% of patients. Conventionally, the presence of LMD is an indication for whole brain radiation therapy (WBRT) and not suitable for stereotactic radiosurgery (SRS). The purpose of the study was to evaluate the local control and overall survival of patients who underwent SRS to focal LMD. We reviewed our prospective registry and identified 32 brain metastases patients with LMD, from a total of 465 patients who underwent SRS between 2013 and 2015. Focal LMD was targeted with SRS in 16 patients. The median imaging follow-up time was 7 months. The median volume of LMD was 372 mm3 and the median margin dose was 16 Gy. Five patients underwent prior WBRT. Histology included non-small cell lung (8), breast (5), melanoma (1), gastrointestinal (1) and ovarian cancer (1). Follow-up MR imaging was available for 14 patients. LMD was stable in 5 and partially regressed in 8 patients at follow-up. One patient had progression of LMD with hemorrhage 5 months after SRS. Seven patients developed distant LMD at a median time of 7 months. The median actuarial overall survival from SRS for LMD was 10.0 months. The 6-month and 1-year actuarial overall survival was 60% and 26% respectively. Six patients underwent WBRT after SRS for focal LMD at a median time of 6 months. Overall, focal LMD may be may be treated successfully with radiosurgery, potentially delaying WBRT in some patients.


Subject(s)
Brain Neoplasms/complications , Meningeal Neoplasms/etiology , Meningeal Neoplasms/surgery , Meninges/surgery , Radiosurgery/methods , Adult , Aged , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/secondary , Cranial Irradiation , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Magnetic Resonance Imaging , Male , Meningeal Neoplasms/diagnostic imaging , Meninges/diagnostic imaging , Middle Aged , Retrospective Studies
8.
Trends Biochem Sci ; 37(2): 66-73, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22099186

ABSTRACT

In response to genotoxic stress, eukaryotic cells activate the DNA damage response (DDR), a series of pathways that coordinate cell cycle arrest and DNA repair to prevent deleterious mutations. In addition, cells possess checkpoint mechanisms that prevent aneuploidy by regulating the number of centrosomes and spindle assembly. Among these mechanisms, ubiquitin-mediated degradation of key proteins has an important role in the regulation of the DDR, centrosome duplication and chromosome segregation. This review discusses the functions of a group of ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) family, in the maintenance of genome stability. Given that general proteasome inhibitors are currently used as anticancer agents, a better understanding of the ubiquitylation of specific targets by specific ubiquitin ligases may result in improved cancer therapeutics.


Subject(s)
Genomic Instability , SKP Cullin F-Box Protein Ligases/chemistry , Animals , DNA Damage , Humans , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitination/genetics
9.
J Neurooncol ; 126(3): 483-91, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26520640

ABSTRACT

We prospectively addressed whether EGFR and KRAS mutations, EML4-ALK, ROS1 and RET rearrangements, or wild-type (WT), affects radiosurgery outcomes and overall survival (OS) in non-small cell lung cancer (NSCLC) patients with brain metastases (BM). Of 326 patients with BM treated in 2012-2014 with Gamma Knife radiosurgery (GKRS), 112 NSCLC patients received GKRS as their initial intracranial treatment. OS, intracranial progression-free survival, and time to intracranial failure were determined. Univariate and multivariate analysis were performed to determine factors affecting OS. Toxicity of treatment was evaluated. Median follow-up was 9 months. Patients with EGFR mutant BM had improved survival compared to WT. Median time to development of BM was higher in EGFR mutant patients, but this difference was not significant (2.2 vs 0.9 months; p = 0.2). Median time to distant brain failure was independent of EGFR mutation status. Karnofsky performance status (KPS), non-squamous histopathology, targeted therapy, systemic disease control, EGFR mutation, and low tumor volume were predictive of increased OS on univariate analysis. KPS (p = 0.001) and non-squamous histopathology (p = 0.03) continued to be significant on multivariate analysis. Patients with EGFR mutant BM underwent salvage treatment more often than those without (p = 0.04). Treatment-related toxicity was no different in patients treated with GKRS combined with targeted therapies versus GKRS alone (5 vs 7%, p = 0.7). Patients with EGFR mutant BM had improved survival compared to a WT cohort. Intracranial disease control following radiosurgery was similar for all tumor subtypes. Radiosurgery is effective for BM and concurrent treatment with targeted therapy appears to be safe.


Subject(s)
Adenocarcinoma/genetics , Brain Neoplasms/genetics , Carcinoma, Neuroendocrine/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/genetics , Mutation/genetics , Radiosurgery/mortality , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Adenocarcinoma/surgery , Adult , Aged , Aged, 80 and over , Brain Neoplasms/mortality , Brain Neoplasms/secondary , Brain Neoplasms/surgery , Carcinoma, Neuroendocrine/mortality , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/surgery , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/surgery , ErbB Receptors/genetics , Female , Follow-Up Studies , Humans , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Male , Middle Aged , Neoplasm Staging , Prognosis , Prospective Studies , Survival Rate
10.
J Neurooncol ; 127(3): 607-15, 2016 May.
Article in English | MEDLINE | ID: mdl-26852222

ABSTRACT

The aim of this study was to evaluate the impact of BRAF inhibitors on survival outcomes in patients receiving stereotactic radiosurgery (SRS) for melanoma brain metastases. We prospectively collected treatment parameters and outcomes for 80 patients with melanoma brain metastases who underwent SRS. Thirty-five patients harbored the BRAF mutation (BRAF-M) and 45 patients did not (BRAF-WT). Univariate and multivariate analyses were performed to identify predictors of overall survival. The median overall survival from first SRS procedure was 6.7, 11.2 months if treated with a BRAF inhibitor and 4.5 months for BRAF-WT. Actuarial survival rates for BRAF-M patients on an inhibitor were 54 % at 6 months and 41 % at 12 months from the time of SRS. In contrast, BRAF-WT had overall survival rates of 28 % at 6 months and 19 % at 12 months. Overall survival was extended for patients on a BRAF inhibitor at or after the first SRS. The median time to intracranial progression was 3.9 months on a BRAF inhibitor and 1.7 months without. The local control rate for all treated tumors was 92.5 %, with no difference based on BRAF status. Patients with higher KPS, fewer treated intracranial metastases, controlled systemic disease, RPA Class 1 and BRAF-M patients had extended overall survival. Overall, patients with BRAF-M treated with both SRS and BRAF inhibitors, at or after SRS, have increased overall survival from the time of SRS. As patients live longer as a result of more effective systemic and local therapies, close surveillance and early management of intracranial disease with SRS will become increasingly important.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/mortality , Melanoma/mortality , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Radiosurgery/mortality , Aged , Brain Neoplasms/secondary , Brain Neoplasms/therapy , Combined Modality Therapy , Female , Follow-Up Studies , Humans , Male , Melanoma/pathology , Melanoma/therapy , Middle Aged , Mutation/genetics , Neoplasm Staging , Prognosis , Prospective Studies , Proto-Oncogene Proteins B-raf/genetics , Survival Rate
11.
Clin Cancer Res ; 30(4): 680-686, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38048045

ABSTRACT

PURPOSE: There are no effective medical therapies for patients with meningioma who progress beyond surgical and radiotherapeutic interventions. Somatostatin receptor type 2 (SSTR2) represents a promising treatment target in meningiomas. In this multicenter, single-arm phase II clinical study (NCT03971461), the SSTR2-targeting radiopharmaceutical 177Lu-DOTATATE is evaluated for its feasibility, safety, and therapeutic efficacy in these patients. PATIENTS AND METHODS: Adult patients with progressive intracranial meningiomas received 177Lu-DOTATATE at a dose of 7.4 GBq (200 mCi) every eight weeks for four cycles. 68Ga-DOTATATE PET-MRI was performed before and six months after the start of the treatment. The primary endpoint was progression-free survival (PFS) at 6 months (PFS-6). Secondary endpoints were safety and tolerability, overall survival (OS) at 12 months (OS-12), median PFS, and median OS. RESULTS: Fourteen patients (female = 11, male = 3) with progressive meningiomas (WHO 1 = 3, 2 = 10, 3 = 1) were enrolled. Median age was 63.1 (range 49.7-78) years. All patients previously underwent tumor resection and at least one course of radiation. Treatment with 177Lu-DOTATATE was well tolerated. Seven patients (50%) achieved PFS-6. Best radiographic response by modified Macdonald criteria was stable disease (SD) in all seven patients. A >25% reduction in 68Ga-DOTATATE uptake (PET) was observed in five meningiomas and two patients. In one lesion, this corresponded to >50% reduction in bidirectional tumor measurements (MRI). CONCLUSIONS: Treatment with 177Lu-DOTATATE was well tolerated. The predefined PFS-6 threshold was met in this interim analysis, thereby allowing this multicenter clinical trial to continue enrollment. 68Ga-DOTATATE PET may be a useful imaging biomarker to assess therapeutic outcome in patients with meningioma.


Subject(s)
Meningeal Neoplasms , Meningioma , Neuroendocrine Tumors , Octreotide/analogs & derivatives , Organometallic Compounds , Receptors, Somatostatin , Adult , Humans , Male , Female , Middle Aged , Aged , Meningioma/diagnostic imaging , Meningioma/radiotherapy , Meningioma/drug therapy , Radiopharmaceuticals , Organometallic Compounds/adverse effects , Positron-Emission Tomography/methods , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/radiotherapy , Meningeal Neoplasms/drug therapy , Biomarkers , Neuroendocrine Tumors/pathology , Positron Emission Tomography Computed Tomography
12.
Neurosurgery ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133020

ABSTRACT

BACKGROUND AND OBJECTIVES: Hydrocephalus after Gamma Knife® stereotactic radiosurgery (SRS) for vestibular schwannomas is a rare but manageable occurrence. Most series report post-SRS communicating hydrocephalus in about 1% of patients, thought to be related to a release of proteinaceous substances into the cerebrospinal fluid. While larger tumor size and older patient age have been associated with post-SRS hydrocephalus, the influence of baseline ventricular anatomy on hydrocephalus risk remains poorly defined. METHODS: A single-institution retrospective cohort study examining patients who developed symptomatic communicating hydrocephalus after undergoing Gamma Knife® SRS for unilateral vestibular schwannomas from 2011 to 2021 was performed. Patients with prior hydrocephalus and cerebrospinal fluid diversion or prior surgical resection were excluded. Baseline tumor volume, third ventricle width, and Evans Index (EI)-maximum width of the frontal horns of the lateral ventricles/maximum internal diameter of the skull-were measured on axial postcontrast T1-weighted magnetic resonance imaging. RESULTS: A total of 378 patients met the inclusion criteria; 14 patients (3.7%) developed symptomatic communicating hydrocephalus and 10 patients (2.6%) underwent shunt placement and 4 patients (1.1%) were observed with milder symptoms. The median age of patients who developed hydrocephalus was 69 years (IQR, 67-72) and for patients younger than age 65 years, the risk was 1%. For tumor volumes <1 cm3, the risk of requiring shunting was 1.2%. The odds of developing symptomatic hydrocephalus were 5.0 and 7.7 times higher in association with a baseline EI > 0.28 (P = .024) and tumor volume >3 cm3 (P = .007), respectively, in multivariate analysis. Fourth ventricle distortion on pre-SRS imaging was significantly associated with hydrocephalus incidence (P < .001). CONCLUSION: Patients with vestibular schwannoma with higher baseline EI, larger tumor volumes, and fourth ventricle deformation are at increased odds of developing post-SRS hydrocephalus. These patients should be counseled regarding risk of hydrocephalus and carefully monitored after SRS.

13.
Neurosurgery ; 94(1): 154-164, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37581437

ABSTRACT

BACKGROUND AND OBJECTIVES: Median survival for all patients with breast cancer with brain metastases (BCBMs) has increased in the era of targeted therapy (TT) and with improved local control of intracranial tumors using stereotactic radiosurgery (SRS) and surgical resection. However, detailed characterization of the patients with long-term survival in the past 5 years remains sparse. The aim of this article is to characterize patients with BCBM who achieved long-term survival and identify factors associated with the uniquely better outcomes and to find predictors of mortality for patients with BCBM. METHODS: We reviewed 190 patients with breast cancer with 931 brain tumors receiving SRS who were followed at our institution with prospective data collection between 2012 and 2022. We analyzed clinical, molecular, and imaging data to assess relationship to outcomes and tumor control. RESULTS: The median overall survival from initial SRS and from breast cancer diagnosis was 25 months (95% CI 19-31 months) and 130 months (95% CI 100-160 months), respectively. Sixteen patients (17%) achieved long-term survival (survival ≥5 years from SRS), 9 of whom are still alive. Predictors of long-term survival included HER2+ status ( P = .041) and treatment with TT ( P = .046). A limited number of patients (11%) died of central nervous system (CNS) causes. A predictor of CNS-related death was the development of leptomeningeal disease after SRS ( P = .025), whereas predictors of non-CNS death included extracranial metastases at first SRS ( P = .017), triple-negative breast cancer ( P = .002), a Karnofsky Performance Status of <80 at first SRS ( P = .002), and active systemic disease at last follow-up ( P = .001). Only 13% of patients eventually needed whole brain radiotherapy. Among the long-term survivors, none died of CNS progression. CONCLUSION: Patients with BCBM can achieve long-term survival. The use of TT and HER2+ disease are associated with long-term survival. The primary cause of death was extracranial disease progression, and none of the patients living ≥5 years died of CNS-related disease.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Radiosurgery , Humans , Female , Breast Neoplasms/radiotherapy , Brain Neoplasms/secondary , Radiosurgery/methods , Central Nervous System , Retrospective Studies
14.
Neurosurgery ; 93(1): 50-59, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36722962

ABSTRACT

BACKGROUND: Brain metastases (BM) have long been considered a terminal diagnosis with management mainly aimed at palliation and little hope for extended survival. Use of brain stereotactic radiosurgery (SRS) and/or resection, in addition to novel systemic therapies, has enabled improvements in overall and progression-free (PFS) survival. OBJECTIVE: To explore the possibility of extended survival in patients with non-small-cell lung cancer (NSCLC) BM in the current era. METHODS: During the years 2008 to 2020, 606 patients with NSCLC underwent their first Gamma Knife SRS for BM at our institution with point-of-care data collection. We reviewed clinical, molecular, imaging, and treatment parameters to explore the relationship of such factors with survival. RESULTS: The median overall survival was 17 months (95% CI, 13-40). Predictors of increased survival in a multivariable analysis included age <65 years ( P < .001), KPS ≥80 ( P < .001), absence of extracranial metastases ( P < .001), fewer BM at first SRS (≤3, P = .003), and targeted therapy ( P = .005), whereas chemotherapy alone was associated with shorter survival ( P = .04). In a subgroup of patients managed before 2016 (n = 264), 38 (14%) were long-term survivors (≥5 years), of which 16% required no active cancer treatment (systemic or brain) for ≥3 years by the end of their follow-up. CONCLUSION: Long-term survival in patients with brain metastases from NSCLC is feasible in the current era of SRS when combined with the use of effective targeted therapeutics. Of those living ≥5 years, the chance for living with stable disease without the need for active treatment for ≥3 years was 16%.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Humans , Aged , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/pathology , Retrospective Studies , Radiosurgery/methods , Brain Neoplasms/pathology
15.
J Neurosurg ; 138(4): 944-954, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36057117

ABSTRACT

OBJECTIVE: Morphological and angioarchitectural features of cerebral arteriovenous malformations (AVMs) have been widely described and associated with outcomes; however, few studies have conducted a quantitative analysis of AVM flow. The authors examined brain AVM flow and transit time on angiograms using direct visual analysis and a computer-based method and correlated these factors with the obliteration response after Gamma Knife radiosurgery. METHODS: A retrospective analysis was conducted at a single institution using a prospective registry of patients managed from January 2013 to December 2019: 71 patients were analyzed using a visual method of flow determination and 38 were analyzed using a computer-based method. After comparison and validation of the two methods, obliteration response was correlated to flow analysis, demographic, angioarchitectural, and dosimetric data. RESULTS: The mean AVM volume was 3.84 cm3 (range 0.64-19.8 cm3), 32 AVMs (45%) were in critical functional locations, and the mean margin radiosurgical dose was 18.8 Gy (range 16-22 Gy). Twenty-seven AVMs (38%) were classified as high flow, 37 (52%) as moderate flow, and 7 (10%) as low flow. Complete obliteration was achieved in 44 patients (62%) at the time of the study; the mean time to obliteration was 28 months for low-flow, 34 months for moderate-flow, and 47 months for high-flow AVMs. Univariate and multivariate analyses of factors predicting obliteration included AVM nidus volume, age, and flow. Adverse radiation effects were identified in 5 patients (7%), and 67 patients (94%) remained free of any functional deterioration during follow-up. CONCLUSIONS: AVM flow analysis and categorization in terms of transit time are useful predictors of the probability of and the time to obliteration. The authors believe that a more quantitative understanding of flow can help to guide stereotactic radiosurgery treatment and set accurate outcome expectations.


Subject(s)
Intracranial Arteriovenous Malformations , Radiosurgery , Humans , Radiosurgery/adverse effects , Radiosurgery/methods , Treatment Outcome , Follow-Up Studies , Retrospective Studies , Intracranial Arteriovenous Malformations/diagnostic imaging , Intracranial Arteriovenous Malformations/radiotherapy , Intracranial Arteriovenous Malformations/surgery
16.
Neurosurgery ; 93(5): 1112-1120, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37326435

ABSTRACT

BACKGROUND AND OBJECTIVES: Dose selection for brain metastases stereotactic radiosurgery (SRS) classically has been based on tumor diameter with a reduction of dose in the settings of prior brain irradiation, larger tumor volumes, and critical brain location. However, retrospective series have shown local control rates to be suboptimal with reduced doses. We hypothesized that lower doses could be effective for specific tumor biologies with concomitant systemic therapies. This study aims to report the local control (LC) and toxicity when using low-dose SRS in the era of modern systemic therapy. METHODS: We reviewed 102 patients with 688 tumors managed between 2014 and 2021 who had low-margin dose radiosurgery, defined as ≤14 Gy. Tumor control was correlated with demographic, clinical, and dosimetric data. RESULTS: The main primary cancer types were lung in 48 (47.1%), breast in 31 (30.4%), melanoma in 8 (7.8%), and others in 15 patients (11.7%). The median tumor volume was 0.037cc (0.002-26.31 cm 3 ), and the median margin dose was 14 Gy (range 10-14). The local failure (LF) cumulative incidence at 1 and 2 years was 6% and 12%, respectively. On competing risk regression analysis, larger volume, melanoma histology, and margin dose were predictors of LF. The 1-year and 2-year cumulative incidence of adverse radiation effects (ARE: an adverse imaging-defined response includes increased enhancement and peritumoral edema) was 0.8% and 2%. CONCLUSION: It is feasible to achieve acceptable LC in BMs with low-dose SRS. Volume, melanoma histology, and margin dose seem to be predictors for LF. The value of a low-dose approach may be in the management of patients with higher numbers of small or adjacent tumors with a history of whole brain radio therapy or multiple SRS sessions and in tumors in critical locations with the aim of LC and preservation of neurological function.


Subject(s)
Brain Neoplasms , Melanoma , Radiosurgery , Humans , Brain/pathology , Brain Neoplasms/pathology , Melanoma/secondary , Radiosurgery/adverse effects , Retrospective Studies , Treatment Outcome , Longitudinal Studies
17.
Neurosurgery ; 93(5): 1057-1065, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37235978

ABSTRACT

BACKGROUND AND OBJECTIVES: Stereotactic radiosurgery (SRS) of larger arteriovenous malformations (AVM) is associated with an elevated incidence of adverse radiation effects (ARE). To date, volume-response and dose-response models have been used to predict such effects. To understand radiological outcomes and their hemodynamic effects on the regional brain. METHODS: A retrospective analysis was conducted at our institution using a prospective registry of patients managed between 2014 and 2020. We included patients with AVM with a nidus larger than 5 cc who received either single-session or volume-staged Gamma Knife radiosurgery. AVM volume changes, volumes of parenchymal response, and obliteration were analyzed and correlated with transit times and diameters of feeding arteries and draining veins. RESULTS: Sixteen patients underwent single-session SRS, and 9 patients underwent volume-staged SRS. The average AVM volume was 12.6 cc (5.5-23). The AVM locations were predominantly lobar (80%) and 17 (68%) were in critical locations. The mean margin dose was 17.2 Gy (15-21), and the median V12Gy was 25.5 cc. Fourteen (56%) AVMs had a transit time shorter than 1 second. The median vein-artery ratio (sum diameter of the veins/sum diameter of feeding arteries) was 1.63 (range, 0.60-4.19). Asymptomatic parenchymal effects were detected in 13 (52%) patients and were symptomatic in 4 (16%) patients. The median time to ARE was 12 months (95% CI 7.6-16.4). On univariate analysis, significant predictors of ARE were lower vein-artery ratio ( P = .024), longer transit time ( P = .05), higher mean dose ( P = .028), and higher D95 ( P = .036). CONCLUSION: Transit times and vessel diameters are valuable predictors of the subsequent parenchymal response after SRS. A more quantitative understanding of blood flow is critical for predicting the effects on the regional brain after AVM radiosurgery.


Subject(s)
Intracranial Arteriovenous Malformations , Radiosurgery , Humans , Radiosurgery/adverse effects , Treatment Outcome , Retrospective Studies , Intracranial Arteriovenous Malformations/diagnostic imaging , Intracranial Arteriovenous Malformations/radiotherapy , Intracranial Arteriovenous Malformations/surgery , Brain/surgery , Follow-Up Studies
18.
J Radiosurg SBRT ; 8(4): 321-324, 2022.
Article in English | MEDLINE | ID: mdl-37416336

ABSTRACT

We present the case of a 65-year-old male with tumor-induced osteomalacia (TIO) caused by an FGF23-secreting phosphaturic tumor of C2 treated definitively with stereotactic body radiation therapy (SBRT) and kyphoplasty. The patient exhibited notable reduction in FGF23 6 weeks following radiotherapy. He also received a dose of the FGF23 monoclonal antibody, burosumab. We discuss the case with emphasis on radiation in the management of TIO. This case demonstrates SBRT as a well-tolerated local treatment option for the management of unresectable FGF23-producing tumors.

19.
Neurosurgery ; 91(4): 648-657, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35973088

ABSTRACT

BACKGROUND: For patients with vestibular schwannoma (VS), stereotactic radiosurgery (SRS) has proven effective in controlling tumor growth while hearing preservation remains a key goal. OBJECTIVE: To evaluate hearing outcomes in the modern era of cochlear dose restriction. METHODS: During the years 2013 to 2018, 353 patients underwent Gamma knife surgery for VS at our institution. We followed 175 patients with pre-SRS serviceable hearing (Gardner-Robertson Score, GR 1 and 2). Volumetric and dosimetry data were collected, including biological effective dose, integral doses of total and intracanalicular tumor components, and hearing outcomes. RESULTS: The mean age was 56 years, 74 patients (42%) had a baseline GR of 2, and the mean cochlear dose was 3.5 Gy. The time to serviceable hearing loss (GR 3-4) was 38 months (95% CI 26-46), with 77% and 62% hearing preservation in the first and second years, respectively. Patients optimal for best hearing outcomes were younger than 58 years with a baseline GR of 1, free canal space ≥0.041 cc (diameter of 4.5 mm), and mean cochlear dose <3.1 Gy. For such patients, hearing preservation rates were 92% by 12 months and 81% by 2 years, staying stable for >5 years post-SRS, significantly higher than the rest of the population. CONCLUSION: Hearing preservation after SRS for patients with VS with serviceable hearing is correlated to the specific baseline GR score (1 or 2), age, cochlear dose, and biological effective dose. Increased tumor-free canal space correlates with better outcomes. The most durable hearing preservation correlates with factors commonly associated with smaller tumors away from the cochlea.


Subject(s)
Hearing Loss , Neuroma, Acoustic , Radiosurgery , Follow-Up Studies , Hearing , Hearing Loss/etiology , Hearing Loss/prevention & control , Hearing Loss/surgery , Hearing Tests , Humans , Middle Aged , Neuroma, Acoustic/complications , Neuroma, Acoustic/radiotherapy , Neuroma, Acoustic/surgery , Radiosurgery/adverse effects , Retrospective Studies , Treatment Outcome
20.
Med Phys ; 48(9): 5522-5530, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34287940

ABSTRACT

PURPOSE: Stereotactic radiosurgery (SRS) has become an important modality in the treatment of brain metastases. The purpose of this study is to investigate the potential of radiomic features from planning magnetic resonance (MR) images and dose maps to predict local failure after SRS for brain metastases. MATERIALS/METHODS: Twenty-eight patients who received Gamma Knife (GK) radiosurgery for brain metastases were retrospectively reviewed in this IRB-approved study. 179 irradiated tumors included 42 that locally failed within one-year follow-up. Using SRS tumor volumes, radiomic features were calculated on T1-weighted contrast-enhanced MR images acquired for treatment planning and planned dose maps. 125 radiomic features regarding tumor shape, dose distribution, MR intensities and textures were extracted for each tumor. Logistic regression with automatic feature selection was built to predict tumor progression from local control after SRS. Feature selection and model evaluation using receiver operating characteristic (ROC) curves were performed in a nested cross validation (CV) scheme. The associations between selected radiomic features and treatment outcomes were statistically assessed by univariate analysis. RESULTS: The logistic model with feature selection achieved ROC AUC of 0.82 ± 0.09 on 5-fold CV, providing 83% sensitivity and 70% specificity for predicting local failure. A total of 10 radiomic features including 1 shape feature, 6 MR images and 3 dose distribution features were selected. These features were significantly associated with treatment outcomes (p < 0.05). The model was validated on independent holdout data with an AUC of 0.78. CONCLUSIONS: Radiomic features from planning MR images and dose maps provided prognostic information in SRS for brain metastases. A model built on the radiomic features shows promise for early prediction of tumor local failure after treatment, potentially aiding in personalized care for brain metastases.


Subject(s)
Brain Neoplasms , Radiosurgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Humans , Magnetic Resonance Imaging , ROC Curve , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL