Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters

Publication year range
1.
Nature ; 616(7955): 123-131, 2023 04.
Article in English | MEDLINE | ID: mdl-36991119

ABSTRACT

The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.


Subject(s)
Coronary Artery Disease , Multiomics , Humans , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Metabolomics/methods , Phenotype , Proteomics/methods , Machine Learning , Black or African American/genetics , Asian/genetics , European People/genetics , United Kingdom , Datasets as Topic , Internet , Reproducibility of Results , Cohort Studies , Proteome/analysis , Proteome/metabolism , Metabolome , Plasma/metabolism , Databases, Factual
2.
Nature ; 610(7933): 704-712, 2022 10.
Article in English | MEDLINE | ID: mdl-36224396

ABSTRACT

Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.


Subject(s)
Body Height , Chromosome Mapping , Polymorphism, Single Nucleotide , Humans , Body Height/genetics , Gene Frequency/genetics , Genome, Human/genetics , Genome-Wide Association Study , Haplotypes/genetics , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Europe/ethnology , Sample Size , Phenotype
3.
Prev Med ; 179: 107821, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38122937

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) is a precursor to cardiovascular diseases and type 2 diabetes. Existing MetS prediction models relied heavily on biochemical measures and those based on non-invasive predictors such as lifestyle behaviours were limited. We aim to (1) develop a weighted lifestyle risk index for MetS and (2) externally validate this index using two Asian-based cohorts in Singapore. METHODS: Using data from the Multi-Ethnic Cohort (MEC) 1 (n = 2873, 41% male), multiple logistic regression was used to identify predictors associated with MetS. A weighted lifestyle risk index was generated using coefficients of the selected predictors in the development cohort (MEC1). Subsequently, the performance of the lifestyle risk index in predicting the occurrence of MetS within 10 years was assessed by discrimination and calibration in an external validation cohort (MEC2) (n = 6070, 43% male). RESULTS: A lifestyle risk index for MetS with nine predictors was developed (age, sex, ethnicity, having a family history of diabetes, BMI, diet, physical activity, smoking status, and screen time). This index demonstrated acceptable discrimination in the development cohort [AUC (95% CI) = 0.74 (0.71, 0.76)] and the validation cohort [AUC (95% CI) = 0.79 (0.77, 0.81)]. CONCLUSION: This lifestyle risk index exhibits potential for risk stratification in population-based screening programmes. Future research could apply a similar methodology to develop disease-specific lifestyle risk indices using nationwide registry-based data.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Syndrome , Humans , Male , Female , Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Risk Factors , Diabetes Mellitus, Type 2/diagnosis , Life Style , Diet
4.
Brief Bioinform ; 22(3)2021 05 20.
Article in English | MEDLINE | ID: mdl-32591784

ABSTRACT

Whole-exome sequencing (WES) has been widely used to study the role of protein-coding variants in genetic diseases. Non-coding regions, typically covered by sparse off-target data, are often discarded by conventional WES analyses. Here, we develop a genotype calling pipeline named WEScall to analyse both target and off-target data. We leverage linkage disequilibrium shared within study samples and from an external reference panel to improve genotyping accuracy. In an application to WES of 2527 Chinese and Malays, WEScall can reduce the genotype discordance rate from 0.26% (SE= 6.4 × 10-6) to 0.08% (SE = 3.6 × 10-6) across 1.1 million single nucleotide polymorphisms (SNPs) in the deeply sequenced target regions. Furthermore, we obtain genotypes at 0.70% (SE = 3.0 × 10-6) discordance rate across 5.2 million off-target SNPs, which had ~1.2× mean sequencing depth. Using this dataset, we perform genome-wide association studies of 10 metabolic traits. Despite of our small sample size, we identify 10 loci at genome-wide significance (P < 5 × 10-8), including eight well-established loci. The two novel loci, both associated with glycated haemoglobin levels, are GPATCH8-SLC4A1 (rs369762319, P = 2.56 × 10-12) and ROR2 (rs1201042, P = 3.24 × 10-8). Finally, using summary statistics from UK Biobank and Biobank Japan, we show that polygenic risk prediction can be significantly improved for six out of nine traits by incorporating off-target data (P < 0.01). These results demonstrate WEScall as a useful tool to facilitate WES studies with decent amounts of off-target data.


Subject(s)
Exome Sequencing/methods , Genetic Predisposition to Disease , Genotype , Anion Exchange Protein 1, Erythrocyte/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Linkage Disequilibrium , Muscle Proteins/genetics , Polymorphism, Single Nucleotide
5.
J Nutr ; 153(5): 1555-1566, 2023 05.
Article in English | MEDLINE | ID: mdl-36963499

ABSTRACT

BACKGROUND: Evidence is accumulating that intake of animal-based and plant-based proteins has different effects on cardiometabolic health, but less is known about the health effect of isocaloric substitution of animal-based and plant-based proteins. Data from Asian populations are limited. OBJECTIVES: This study aimed to evaluate the effects of isocaloric substitution of total plant-based proteins for total and various animal-based protein food groups and to evaluate the effects of substituting protein from legumes and pulses for various animal-based protein food groups on cardiovascular disease (CVD) risk factors and predicted 10-y CVD risk. METHODS: We conducted a cross-sectional analysis using data collected from 9211 Singapore residents (aged 21-75 y) from the Singapore Multi-Ethnic Cohort. Data on sociodemographic and lifestyle factors were collected using questionnaires. Dietary intakes were assessed using a validated FFQ. BMI, waist circumference, and blood pressure were measured during a physical examination, and blood samples were collected to measure lipid profiles. Associations were assessed by substitution models using a multiple linear regression analysis. RESULTS: Isocaloric substitution of total plant-based proteins for total and all specific animal-based protein food groups were associated with lower BMI (ß: -0.30; 95% CI: -0.38, -0.22), waist circumference (ß: -0.85; 95% CI: -1.04, -0.66), and LDL cholesterol concentrations (ß: -0.06; 95% CI: -0.08, -0.05) (P < 0.0056). Replacement of processed meat and processed seafood proteins with total plant-based proteins was associated with improvement in most CVD risk factors and predicted 10-y CVD risk. Replacement of oily fish with legume proteins was associated with lower HDL cholesterol and higher TG concentrations. CONCLUSIONS: The substitution of plant-based proteins for animal-based proteins, especially from processed meat and processed seafood, was inversely associated with the established CVD risk factors such as BMI, waist circumference, and lipid concentrations and predicted 10-y CVD risk. These findings warrant further investigation in independent studies in other Asian populations.


Subject(s)
Cardiovascular Diseases , Plant Proteins , Animals , Risk Factors , Cardiometabolic Risk Factors , Cross-Sectional Studies , Vegetables , Lipids , Diet
6.
Hum Mol Genet ; 29(2): 189-201, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31628463

ABSTRACT

Metabolites are small intermediate products of cellular metabolism perturbed in a variety of complex disorders. Identifying genetic markers associated with metabolite concentrations could delineate disease-related metabolic pathways in humans. We tested genetic variants for associations with 136 metabolites in 1954 Chinese from Singapore. At a conservative genome-wide threshold (3.7 × 10-10), we detected 1899 variant-metabolite associations at 16 genetic loci. Three loci (ABCA7, A4GALT, GSTM2) represented novel associations with metabolites, with the strongest association observed between ABCA7 and d18:1/24:1 dihexosylceramide. Among 13 replicated loci, we identified six new variants independent of previously reported metabolite or lipid signals. We observed variant-metabolite associations at two loci (ABCA7, CHCHD2) that have been linked to neurodegenerative diseases. At SGPP1 and SPTLC3 loci, genetic variants showed preferential selectivity for sphingolipids with d16 (rather than d18) sphingosine backbone, including sphingosine-1-phosphate (S1P). Our results provide new genetic associations for metabolites and highlight the role of metabolites as intermediate modulators in disease metabolic pathways.


Subject(s)
Alzheimer Disease/genetics , Asian People/genetics , Glycosphingolipids/metabolism , Parkinson Disease/genetics , Sphingolipids/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Alzheimer Disease/metabolism , Carnitine/analogs & derivatives , Carnitine/metabolism , China , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Glycosphingolipids/genetics , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Liver-Specific Organic Anion Transporter 1/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Lysophospholipids/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Parkinson Disease/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Serine/metabolism , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/chemistry , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Tandem Mass Spectrometry , Transcription Factors/genetics , Transcription Factors/metabolism
7.
BMC Med ; 20(1): 150, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35468796

ABSTRACT

BACKGROUND: Family history, and genetic and non-genetic risk factors can stratify women according to their individual risk of developing breast cancer. The extent of overlap between these risk predictors is not clear. METHODS: In this case-only analysis involving 7600 Asian breast cancer patients diagnosed between age 30 and 75 years, we examined identification of high-risk patients based on positive family history, the Gail model 5-year absolute risk [5yAR] above 1.3%, breast cancer predisposition genes (protein-truncating variants [PTV] in ATM, BRCA1, BRCA2, CHEK2, PALB2, BARD1, RAD51C, RAD51D, or TP53), and polygenic risk score (PRS) 5yAR above 1.3%. RESULTS: Correlation between 5yAR (at age of diagnosis) predicted by PRS and the Gail model was low (r=0.27). Fifty-three percent of breast cancer patients (n=4041) were considered high risk by one or more classification criteria. Positive family history, PTV carriership, PRS, or the Gail model identified 1247 (16%), 385 (5%), 2774 (36%), and 1592 (21%) patients who were considered at high risk, respectively. In a subset of 3227 women aged below 50 years, the four models studied identified 470 (15%), 213 (7%), 769 (24%), and 325 (10%) unique patients who were considered at high risk, respectively. For younger women, PRS and PTVs together identified 745 (59% of 1276) high-risk individuals who were not identified by the Gail model or family history. CONCLUSIONS: Family history and genetic and non-genetic risk stratification tools have the potential to complement one another to identify women at high risk.


Subject(s)
Breast Neoplasms , Asian People , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Risk Assessment
8.
J Hum Genet ; 67(2): 87-93, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34376796

ABSTRACT

Despite the dramatic underrepresentation of non-European populations in human genetics studies, researchers continue to exclude participants of non-European ancestry, as well as variants rare in European populations, even when these data are available. This practice perpetuates existing research disparities and can lead to important and large effect size associations being missed. Here, we conducted genome-wide association studies (GWAS) of 31 serum and urine biomarker quantitative traits in African (n = 9354), East Asian (n = 2559), and South Asian (n = 9823) ancestry UK Biobank (UKBB) participants. We adjusted for all known GWAS catalog variants for each trait, as well as novel signals identified in a recent European ancestry-focused analysis of UKBB participants. We identify 7 novel signals in African ancestry and 2 novel signals in South Asian ancestry participants (p < 1.61E-10). Many of these signals are highly plausible, including a cis pQTL for the gene encoding gamma-glutamyl transferase and PIEZO1 and G6PD variants with impacts on HbA1c through likely erythrocytic mechanisms. This work illustrates the importance of using the genetic data we already have in diverse populations, with novel discoveries possible in even modest sample sizes.


Subject(s)
Biological Specimen Banks/statistics & numerical data , Biomarkers/metabolism , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Alleles , Asian People/genetics , Biomarkers/blood , Biomarkers/urine , Black People/genetics , Female , Gene Frequency , Genetic Predisposition to Disease/ethnology , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/statistics & numerical data , Genotype , Humans , Male , Phenotype , United Kingdom , White People/genetics
9.
Mol Psychiatry ; 26(6): 2111-2125, 2021 06.
Article in English | MEDLINE | ID: mdl-32372009

ABSTRACT

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.


Subject(s)
Genome-Wide Association Study , Hypertension , Blood Pressure/genetics , Epistasis, Genetic , Genetic Loci , Humans , Hypertension/genetics , Polymorphism, Single Nucleotide
10.
Nature ; 536(7614): 41-47, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27398621

ABSTRACT

The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Alleles , DNA Mutational Analysis , Europe/ethnology , Exome , Genome-Wide Association Study , Genotyping Techniques , Humans , Sample Size
11.
Hum Mol Genet ; 28(15): 2615-2633, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31127295

ABSTRACT

Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.


Subject(s)
Arterial Pressure/genetics , Gene-Environment Interaction , Hypertension/genetics , Polymorphism, Genetic , Racial Groups/genetics , Smoking/adverse effects , Adolescent , Adult , Aged , Aged, 80 and over , Antiporters/genetics , Blood Pressure/genetics , Caspase 9/genetics , Ethnicity/genetics , Female , Genome-Wide Association Study , Humans , Hypertension/etiology , Male , Membrane Proteins/genetics , Middle Aged , Receptors, Vasopressin/genetics , Sulfate Transporters/genetics , Tumor Suppressor Proteins/genetics , Young Adult
12.
Am J Hum Genet ; 102(3): 375-400, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29455858

ABSTRACT

Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10-8) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10-8). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).


Subject(s)
Blood Pressure/genetics , Genetic Loci , Genome-Wide Association Study , Racial Groups/genetics , Smoking/genetics , Cohort Studies , Diastole/genetics , Epistasis, Genetic , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Reproducibility of Results , Systole/genetics
13.
Curr Diab Rep ; 21(6): 17, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33846905

ABSTRACT

PURPOSE OF REVIEW: Prevalence of type 2 diabetes (T2D) and progression of complications differ between worldwide populations. While obesity is a major contributing risk factor, variations in physiological manifestations, e.g., developing T2D at lower body mass index in some populations, suggest other contributing factors. Early T2D genetic associations were mostly discovered in European ancestry populations. This review describes the progression of genetic discoveries associated with T2D in individuals of East Asian ancestry in the last 10 years and highlights the shared genetic susceptibility between the population groups and additional insights into genetic contributions to T2D. RECENT FINDINGS: Through increased sample size and power, new genetic associations with T2D were discovered in East Asian ancestry populations, often with higher allele frequencies than European ancestry populations. As we continue to generate maps of T2D-associated variants across diverse populations, there will be a critical need to expand and diversify other omics resources to enable integration for clinical translation.


Subject(s)
Diabetes Mellitus, Type 2 , Asian People/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide/genetics
14.
Lipids Health Dis ; 20(1): 113, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34548093

ABSTRACT

BACKGROUND: Hypertriglyceridemia has emerged as a critical coronary artery disease (CAD) risk factor. Rare loss-of-function (LoF) variants in apolipoprotein C-III have been reported to reduce triglycerides (TG) and are cardioprotective in American Indians and Europeans. However, there is a lack of data in other Europeans and non-Europeans. Also, whether genetically increased plasma TG due to ApoC-III is causally associated with increased CAD risk is still unclear and inconsistent. The objectives of this study were to verify the cardioprotective role of earlier reported six LoF variants of APOC3 in South Asians and other multi-ethnic cohorts and to evaluate the causal association of TG raising common variants for increasing CAD risk. METHODS: We performed gene-centric and Mendelian randomization analyses and evaluated the role of genetic variation encompassing APOC3 for affecting circulating TG and the risk for developing CAD. RESULTS: One rare LoF variant (rs138326449) with a 37% reduction in TG was associated with lowered risk for CAD in Europeans (p = 0.007), but we could not confirm this association in Asian Indians (p = 0.641). Our data could not validate the cardioprotective role of other five LoF variants analysed. A common variant rs5128 in the APOC3 was strongly associated with elevated TG levels showing a p-value 2.8 × 10- 424. Measures of plasma ApoC-III in a small subset of Sikhs revealed a 37% increase in ApoC-III concentrations among homozygous mutant carriers than the wild-type carriers of rs5128. A genetically instrumented per 1SD increment of plasma TG level of 15 mg/dL would cause a mild increase (3%) in the risk for CAD (p = 0.042). CONCLUSIONS: Our results highlight the challenges of inclusion of rare variant information in clinical risk assessment and the generalizability of implementation of ApoC-III inhibition for treating atherosclerotic disease. More studies would be needed to confirm whether genetically raised TG and ApoC-III concentrations would increase CAD risk.


Subject(s)
Apolipoprotein C-III/genetics , Coronary Artery Disease/genetics , Genetic Variation , Aged , Alleles , Coronary Artery Disease/ethnology , Europe/epidemiology , Female , Genetic Association Studies , Genotype , Heterozygote , Humans , India/epidemiology , Male , Mendelian Randomization Analysis , Middle Aged , Mutation , Risk , Sequence Analysis, DNA , Triglycerides/blood
15.
Proc Natl Acad Sci U S A ; 115(2): 379-384, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29279374

ABSTRACT

A major challenge in evaluating the contribution of rare variants to complex disease is identifying enough copies of the rare alleles to permit informative statistical analysis. To investigate the contribution of rare variants to the risk of type 2 diabetes (T2D) and related traits, we performed deep whole-genome analysis of 1,034 members of 20 large Mexican-American families with high prevalence of T2D. If rare variants of large effect accounted for much of the diabetes risk in these families, our experiment was powered to detect association. Using gene expression data on 21,677 transcripts for 643 pedigree members, we identified evidence for large-effect rare-variant cis-expression quantitative trait loci that could not be detected in population studies, validating our approach. However, we did not identify any rare variants of large effect associated with T2D, or the related traits of fasting glucose and insulin, suggesting that large-effect rare variants account for only a modest fraction of the genetic risk of these traits in this sample of families. Reliable identification of large-effect rare variants will require larger samples of extended pedigrees or different study designs that further enrich for such variants.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation , Mexican Americans/genetics , Diabetes Mellitus, Type 2/ethnology , Diabetes Mellitus, Type 2/pathology , Family Health , Female , Gene Frequency , Genetic Predisposition to Disease/ethnology , Genome-Wide Association Study/methods , Genotype , Humans , Male , Pedigree , Phenotype , Quantitative Trait Loci/genetics , Whole Genome Sequencing/methods
16.
Hum Mol Genet ; 27(9): 1664-1674, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29481666

ABSTRACT

Comprehensive metabolite profiling captures many highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serum amino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6 million genotyped and imputed variants in 8545 non-diabetic Finnish men from the METabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966). We identified five novel loci associated with amino acid levels (P = < 5×10-8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10-26); ZFHX3 (chr16:73326579, minor allele frequency (MAF) = 0.42%, P = 3.6×10-9), LIPC (rs10468017, P = 1.5×10-8), and WWOX (rs9937914, P = 3.8×10-8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10-9). Gene-based tests identified two novel genes harboring missense variants of MAF <1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10-6) and BCAT2 with valine (Pgene = 7.4×10-7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017, MAF=0.95%, Pconditional = 5.8×10-40) with glycine levels and HAL (rs141635447, MAF = 0.46%, Pconditional = 9.4×10-11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend<0.001). These novel signals provide further insight into the molecular mechanisms of amino acid metabolism and potentially, their perturbations in disease.


Subject(s)
Amino Acids/metabolism , Genome-Wide Association Study/methods , Finland , Gene Frequency/genetics , Genotype , Humans , Male , Middle Aged
17.
J Hum Genet ; 65(4): 411-420, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31959871

ABSTRACT

Genome-wide association studies (GWASs) have identified many genetic variations associated with type 2 diabetes mellitus (T2DM) in Asians, but understanding the functional genetic variants that influence traits is often a complex process. In this study, fine mapping and other analytical strategies were performed to investigate the effects of G protein signaling modulator 1 (GPSM1) on insulin resistance in skeletal muscle. A total of 128 single-nucleotide polymorphisms (SNPs) within GPSM1 were analysed in 21,897 T2DM cases and 32,710 healthy controls from seven GWASs. The SNP rs28539249 in intron 9 of GPSM1 showed a nominally significant association with T2DM in Asians (OR = 1.07, 95% CI = 1.04-1.10, P < 10-4). The GPSM1 mRNA was increased in skeletal muscle and correlated with T2DM traits across obese mice model. An eQTL for the cis-acting regulation of GPSM1 expression in human skeletal muscle was identified for rs28539249, and the increased GPSM1 expression related with T2DM traits within GEO datasets. Another independent Asian cohort showed that rs28539249 is associated with the skeletal muscle expression of CACFD1, GTF3C5, SARDH, and FAM163B genes, which are functionally enriched for endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) pathways. Moreover, rs28539249 locus was predicted to disrupt regulatory regions in human skeletal muscle with enriched epigenetic marks and binding affinity for CTCF. Supershift EMSA assays followed luciferase assays demonstrated the CTCF specifically binding to rs28539249-C allele leading to decreased transcriptional activity. Thus, the post-GWAS annotation confirmed the Asian-specific association of genetic variant in GPSM1 with T2DM, suggesting a role for the variant in the regulation in skeletal muscle.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Genetic Predisposition to Disease , Guanine Nucleotide Dissociation Inhibitors , Muscle, Skeletal/metabolism , Polymorphism, Single Nucleotide , Animals , Asian People , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Genome-Wide Association Study , Guanine Nucleotide Dissociation Inhibitors/genetics , Guanine Nucleotide Dissociation Inhibitors/metabolism , Humans , Mice
18.
Eur J Epidemiol ; 35(7): 685-697, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32383070

ABSTRACT

Epidemiology studies suggested that low birthweight was associated with a higher risk of hypertension in later life. However, little is known about the causality of such associations. In our study, we evaluated the causal association of low birthweight with adulthood hypertension following a standard analytic protocol using the study-level data of 183,433 participants from 60 studies (CHARGE-BIG consortium), as well as that with blood pressure using publicly available summary-level genome-wide association data from EGG consortium of 153,781 participants, ICBP consortium and UK Biobank cohort together of 757,601 participants. We used seven SNPs as the instrumental variable in the study-level analysis and 47 SNPs in the summary-level analysis. In the study-level analyses, decreased birthweight was associated with a higher risk of hypertension in adults (the odds ratio per 1 standard deviation (SD) lower birthweight, 1.22; 95% CI 1.16 to 1.28), while no association was found between genetically instrumented birthweight and hypertension risk (instrumental odds ratio for causal effect per 1 SD lower birthweight, 0.97; 95% CI 0.68 to 1.41). Such results were consistent with that from the summary-level analyses, where the genetically determined low birthweight was not associated with blood pressure measurements either. One SD lower genetically determined birthweight was not associated with systolic blood pressure (ß = - 0.76, 95% CI - 2.45 to 1.08 mmHg), 0.06 mmHg lower diastolic blood pressure (ß = - 0.06, 95% CI - 0.93 to 0.87 mmHg), or pulse pressure (ß = - 0.65, 95% CI - 1.38 to 0.69 mmHg, all p > 0.05). Our findings suggest that the inverse association of birthweight with hypertension risk from observational studies was not supported by large Mendelian randomization analyses.


Subject(s)
Birth Weight , Blood Pressure/genetics , Hypertension/epidemiology , Hypertension/genetics , Mendelian Randomization Analysis/methods , Adult , Birth Weight/genetics , Birth Weight/physiology , Blood Pressure/physiology , Body Mass Index , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Infant, Low Birth Weight , Infant, Newborn , Male , Polymorphism, Single Nucleotide/genetics
19.
PLoS Genet ; 13(9): e1007021, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28961250

ABSTRACT

Knowledge of biological relatedness between samples is important for many genetic studies. In large-scale human genetic association studies, the estimated kinship is used to remove cryptic relatedness, control for family structure, and estimate trait heritability. However, estimation of kinship is challenging for sparse sequencing data, such as those from off-target regions in target sequencing studies, where genotypes are largely uncertain or missing. Existing methods often assume accurate genotypes at a large number of markers across the genome. We show that these methods, without accounting for the genotype uncertainty in sparse sequencing data, can yield a strong downward bias in kinship estimation. We develop a computationally efficient method called SEEKIN to estimate kinship for both homogeneous samples and heterogeneous samples with population structure and admixture. Our method models genotype uncertainty and leverages linkage disequilibrium through imputation. We test SEEKIN on a whole exome sequencing dataset (WES) of Singapore Chinese and Malays, which involves substantial population structure and admixture. We show that SEEKIN can accurately estimate kinship coefficient and classify genetic relatedness using off-target sequencing data down sampled to ~0.15X depth. In application to the full WES dataset without down sampling, SEEKIN also outperforms existing methods by properly analyzing shallow off-target data (~0.75X). Using both simulated and real phenotypes, we further illustrate how our method improves estimation of trait heritability for WES studies.


Subject(s)
Databases, Genetic , Genetics, Population/methods , Genome, Human , Sequence Analysis, DNA , Asian People/genetics , Computational Biology , Exome , Genetic Association Studies , Genotype , Genotyping Techniques , Humans , Linkage Disequilibrium , Models, Genetic , Software
20.
PLoS Genet ; 13(10): e1007079, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29084231

ABSTRACT

Lipid and lipoprotein subclasses are associated with metabolic and cardiovascular diseases, yet the genetic contributions to variability in subclass traits are not fully understood. We conducted single-variant and gene-based association tests between 15.1M variants from genome-wide and exome array and imputed genotypes and 72 lipid and lipoprotein traits in 8,372 Finns. After accounting for 885 variants at 157 previously identified lipid loci, we identified five novel signals near established loci at HIF3A, ADAMTS3, PLTP, LCAT, and LIPG. Four of the signals were identified with a low-frequency (0.005

Subject(s)
Gene Frequency/genetics , Lipid Metabolism/genetics , Lipids/genetics , Lipoproteins/genetics , Polymorphism, Single Nucleotide/genetics , Triglycerides/genetics , White People/genetics , Cholesterol, HDL/genetics , Exome/genetics , Finland , Genome-Wide Association Study/methods , Genotype , Humans , Male , Middle Aged , Principal Component Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL