Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Cell ; 184(18): 4819-4837.e22, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34380046

ABSTRACT

Animal bodies are composed of cell types with unique expression programs that implement their distinct locations, shapes, structures, and functions. Based on these properties, cell types assemble into specific tissues and organs. To systematically explore the link between cell-type-specific gene expression and morphology, we registered an expression atlas to a whole-body electron microscopy volume of the nereid Platynereis dumerilii. Automated segmentation of cells and nuclei identifies major cell classes and establishes a link between gene activation, chromatin topography, and nuclear size. Clustering of segmented cells according to gene expression reveals spatially coherent tissues. In the brain, genetically defined groups of neurons match ganglionic nuclei with coherent projections. Besides interneurons, we uncover sensory-neurosecretory cells in the nereid mushroom bodies, which thus qualify as sensory organs. They furthermore resemble the vertebrate telencephalon by molecular anatomy. We provide an integrated browser as a Fiji plugin for remote exploration of all available multimodal datasets.


Subject(s)
Cell Shape , Gene Expression Regulation , Polychaeta/cytology , Polychaeta/genetics , Single-Cell Analysis , Animals , Cell Nucleus/metabolism , Ganglia, Invertebrate/metabolism , Gene Expression Profiling , Multigene Family , Multimodal Imaging , Mushroom Bodies/metabolism , Polychaeta/ultrastructure
2.
Nature ; 627(8005): 811-820, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262590

ABSTRACT

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.


Subject(s)
Evolution, Molecular , Hagfishes , Vertebrates , Animals , Hagfishes/anatomy & histology , Hagfishes/cytology , Hagfishes/embryology , Hagfishes/genetics , Lampreys/genetics , Phylogeny , Vertebrates/genetics , Synteny , Polyploidy , Cell Lineage
3.
Nature ; 618(7963): 110-117, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198475

ABSTRACT

A central question in evolutionary biology is whether sponges or ctenophores (comb jellies) are the sister group to all other animals. These alternative phylogenetic hypotheses imply different scenarios for the evolution of complex neural systems and other animal-specific traits1-6. Conventional phylogenetic approaches based on morphological characters and increasingly extensive gene sequence collections have not been able to definitively answer this question7-11. Here we develop chromosome-scale gene linkage, also known as synteny, as a phylogenetic character for resolving this question12. We report new chromosome-scale genomes for a ctenophore and two marine sponges, and for three unicellular relatives of animals (a choanoflagellate, a filasterean amoeba and an ichthyosporean) that serve as outgroups for phylogenetic analysis. We find ancient syntenies that are conserved between animals and their close unicellular relatives. Ctenophores and unicellular eukaryotes share ancestral metazoan patterns, whereas sponges, bilaterians, and cnidarians share derived chromosomal rearrangements. Conserved syntenic characters unite sponges with bilaterians, cnidarians, and placozoans in a monophyletic clade to the exclusion of ctenophores, placing ctenophores as the sister group to all other animals. The patterns of synteny shared by sponges, bilaterians, and cnidarians are the result of rare and irreversible chromosome fusion-and-mixing events that provide robust and unambiguous phylogenetic support for the ctenophore-sister hypothesis. These findings provide a new framework for resolving deep, recalcitrant phylogenetic problems and have implications for our understanding of animal evolution.


Subject(s)
Ctenophora , Phylogeny , Animals , Ctenophora/classification , Ctenophora/genetics , Genome/genetics , Porifera/classification , Porifera/genetics , Synteny/genetics
4.
Genome Res ; 34(3): 498-513, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38508693

ABSTRACT

Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.


Subject(s)
Genome , Hydrozoa , Animals , Hydrozoa/genetics , Evolution, Molecular , Transcriptome , Stem Cells/metabolism , Male , Phylogeny , Single-Cell Analysis/methods
5.
Nature ; 590(7845): 284-289, 2021 02.
Article in English | MEDLINE | ID: mdl-33461212

ABSTRACT

Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans1-3. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish. The lungfish genome continues to expand independently (its transposable elements are still active), through mechanisms different to those of the enormous genomes of salamanders. The 17 fully assembled lungfish macrochromosomes maintain synteny to other vertebrate chromosomes, and all microchromosomes maintain conserved ancient homology with the ancestral vertebrate karyotype. Our phylogenomic analyses confirm previous reports that lungfish occupy a key evolutionary position as the closest living relatives to tetrapods4,5, underscoring the importance of lungfish for understanding innovations associated with terrestrialization. Lungfish preadaptations to living on land include the gain of limb-like expression in developmental genes such as hoxc13 and sall1 in their lobed fins. Increased rates of evolution and the duplication of genes associated with obligate air-breathing, such as lung surfactants and the expansion of odorant receptor gene families (which encode proteins involved in detecting airborne odours), contribute to the tetrapod-like biology of lungfishes. These findings advance our understanding of this major transition during vertebrate evolution.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Fishes/genetics , Gait/genetics , Genome/genetics , Lung , Vertebrates/genetics , Air , Animal Fins/anatomy & histology , Animals , Bayes Theorem , Chromosomes/genetics , Extremities/anatomy & histology , Female , Fishes/physiology , Gene Expression Regulation, Developmental , Genes, Homeobox/genetics , Genomics , Humans , Long Interspersed Nucleotide Elements/genetics , Lung/anatomy & histology , Lung/physiology , Mice , Molecular Sequence Annotation , Phylogeny , Respiration , Smell/physiology , Synteny , Vertebrates/physiology , Vomeronasal Organ/anatomy & histology
6.
Genome Res ; 33(2): 283-298, 2023 02.
Article in English | MEDLINE | ID: mdl-36639202

ABSTRACT

The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra, including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris, an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type-specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.


Subject(s)
Hydra , Animals , Hydra/genetics , Hydra/metabolism , Cell Differentiation , Chromatin/metabolism , Chromosomes , Epigenesis, Genetic
8.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34725164

ABSTRACT

Microchromosomes, once considered unimportant shreds of the chicken genome, are gene-rich elements with a high GC content and few transposable elements. Their origin has been debated for decades. We used cytological and whole-genome sequence comparisons, and chromosome conformation capture, to trace their origin and fate in genomes of reptiles, birds, and mammals. We find that microchromosomes as well as macrochromosomes are highly conserved across birds and share synteny with single small chromosomes of the chordate amphioxus, attesting to their origin as elements of an ancient animal genome. Turtles and squamates (snakes and lizards) share different subsets of ancestral microchromosomes, having independently lost microchromosomes by fusion with other microchromosomes or macrochromosomes. Patterns of fusions were quite different in different lineages. Cytological observations show that microchromosomes in all lineages are spatially separated into a central compartment at interphase and during mitosis and meiosis. This reflects higher interaction between microchromosomes than with macrochromosomes, as observed by chromosome conformation capture, and suggests some functional coherence. In highly rearranged genomes fused microchromosomes retain most ancestral characteristics, but these may erode over evolutionary time; surprisingly, de novo microchromosomes have rapidly adopted high interaction. Some chromosomes of early-branching monotreme mammals align to several bird microchromosomes, suggesting multiple microchromosome fusions in a mammalian ancestor. Subsequently, multiple rearrangements fueled the extraordinary karyotypic diversity of therian mammals. Thus, microchromosomes, far from being aberrant genetic elements, represent fundamental building blocks of amniote chromosomes, and it is mammals, rather than reptiles and birds, that are atypical.


Subject(s)
Biological Evolution , Chordata/genetics , Chromosomes, Mammalian , Genome , Animals , Base Sequence , Conserved Sequence
9.
Mol Biol Evol ; 39(1)2022 01 07.
Article in English | MEDLINE | ID: mdl-34865078

ABSTRACT

Whole-genome duplications (WGDs) have long been considered the causal mechanism underlying dramatic increases to morphological complexity due to the neo-functionalization of paralogs generated during these events. Nonetheless, an alternative hypothesis suggests that behind the retention of most paralogs is not neo-functionalization, but instead the degree of the inter-connectivity of the intended gene product, as well as the mode of the WGD itself. Here, we explore both the causes and consequences of WGD by examining the distribution, expression, and molecular evolution of microRNAs (miRNAs) in both gnathostome vertebrates as well as chelicerate arthropods. We find that although the number of miRNA paralogs tracks the number of WGDs experienced within the lineage, few of these paralogs experienced changes to the seed sequence, and thus are functionally equivalent relative to their mRNA targets. Nonetheless, in gnathostomes, although the retention of paralogs following the 1R autotetraploidization event is similar across the two subgenomes, the paralogs generated by the gnathostome 2R allotetraploidization event are retained in higher numbers on one subgenome relative to the second, with the miRNAs found on the preferred subgenome showing both higher expression of mature miRNA transcripts and slower molecular evolution of the precursor miRNA sequences. Importantly, WGDs do not result in the creation of miRNA novelty, nor do WGDs correlate to increases in complexity. Instead, it is the number of miRNA seed sequences in the genome itself that not only better correlate to instances in complexification, but also mechanistically explain why complexity increases when new miRNA families are established.


Subject(s)
Gene Duplication , Genome , MicroRNAs , Animals , Evolution, Molecular , MicroRNAs/genetics , Phylogeny
10.
Bioinformatics ; 38(24): 5434-5436, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36269177

ABSTRACT

SUMMARY: Current approaches detect conserved genomic order either at chromosomal (macrosynteny) or at subchromosomal scales (microsynteny). The latter generally requires collinearity and hard thresholds on syntenic region size, thus excluding a major proportion of syntenies with recent expansions or minor rearrangements. 'SYNPHONI' bridges the gap between micro- and macrosynteny detection, providing detailed information on both synteny conservation and transformation throughout the evolutionary history of animal genomes. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at https://github.com/nsmro/SYNPHONI, implemented in Python 3.9. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics , Software , Animals , Synteny , Phylogeny , Genome
11.
BMC Biol ; 20(1): 116, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35581640

ABSTRACT

BACKGROUND: Transposable elements (TEs) widely contribute to the evolution of genomes allowing genomic innovations, generating germinal and somatic heterogeneity, and giving birth to long non-coding RNAs (lncRNAs). These features have been associated to the evolution, functioning, and complexity of the nervous system at such a level that somatic retrotransposition of long interspersed element (LINE) L1 has been proposed to be associated to human cognition. Among invertebrates, octopuses are fascinating animals whose nervous system reaches a high level of complexity achieving sophisticated cognitive abilities. The sequencing of the genome of the Octopus bimaculoides revealed a striking expansion of TEs which were proposed to have contributed to the evolution of its complex nervous system. We recently found a similar expansion also in the genome of Octopus vulgaris. However, a specific search for the existence and the transcription of full-length transpositionally competent TEs has not been performed in this genus. RESULTS: Here, we report the identification of LINE elements competent for retrotransposition in Octopus vulgaris and Octopus bimaculoides and show evidence suggesting that they might be transcribed and determine germline and somatic polymorphisms especially in the brain. Transcription and translation measured for one of these elements resulted in specific signals in neurons belonging to areas associated with behavioral plasticity. We also report the transcription of thousands of lncRNAs and the pervasive inclusion of TE fragments in the transcriptomes of both Octopus species, further testifying the crucial activity of TEs in the evolution of the octopus genomes. CONCLUSIONS: The neural transcriptome of the octopus shows the transcription of thousands of putative lncRNAs and of a full-length LINE element belonging to the RTE class. We speculate that a convergent evolutionary process involving retrotransposons activity in the brain has been important for the evolution of sophisticated cognitive abilities in this genus.


Subject(s)
Octopodiformes , RNA, Long Noncoding , Animals , Brain , DNA Transposable Elements , Female , Genome , Octopodiformes/genetics , Pregnancy , RNA, Long Noncoding/genetics , Retroelements/genetics
12.
BMC Genomics ; 23(1): 143, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35177000

ABSTRACT

BACKGROUND: Animal genomes are strikingly conserved in terms of local gene order (microsynteny). While some of these microsyntenies have been shown to be coregulated or to form gene regulatory blocks, the diversity of their genomic and regulatory properties across the metazoan tree of life remains largely unknown. RESULTS: Our comparative analyses of 49 animal genomes reveal that the largest gains of synteny occurred in the last common ancestor of bilaterians and cnidarians and in that of bilaterians. Depending on their node of emergence, we further show that novel syntenic blocks are characterized by distinct functional compositions (Gene Ontology terms enrichment) and gene density properties, such as high, average and low gene density regimes. This is particularly pronounced among bilaterian novel microsyntenies, most of which fall into high gene density regime associated with higher gene coexpression levels. Conversely, a majority of vertebrate novel microsyntenies display a low gene density regime associated with lower gene coexpression levels. CONCLUSIONS: Our study provides first evidence for evolutionary transitions between different modes of microsyntenic block regulation that coincide with key events of metazoan evolution. Moreover, the microsyntenic profiling strategy and interactive online application (Syntenic Density Browser, available at: http://synteny.csb.univie.ac.at/ ) we present here can be used to explore regulatory properties of microsyntenic blocks and predict their coexpression in a wide-range of animal genomes.


Subject(s)
Evolution, Molecular , Genome , Animals , Gene Order , Genomics , Synteny
13.
Nature ; 531(7596): 637-641, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-26886793

ABSTRACT

Animals are grouped into ~35 'phyla' based upon the notion of distinct body plans. Morphological and molecular analyses have revealed that a stage in the middle of development--known as the phylotypic period--is conserved among species within some phyla. Although these analyses provide evidence for their existence, phyla have also been criticized as lacking an objective definition, and consequently based on arbitrary groupings of animals. Here we compare the developmental transcriptomes of ten species, each annotated to a different phylum, with a wide range of life histories and embryonic forms. We find that in all ten species, development comprises the coupling of early and late phases of conserved gene expression. These phases are linked by a divergent 'mid-developmental transition' that uses species-specific suites of signalling pathways and transcription factors. This mid-developmental transition overlaps with the phylotypic period that has been defined previously for three of the ten phyla, suggesting that transcriptional circuits and signalling mechanisms active during this transition are crucial for defining the phyletic body plan and that the mid-developmental transition may be used to define phylotypic periods in other phyla. Placing these observations alongside the reported conservation of mid-development within phyla, we propose that a phylum may be defined as a collection of species whose gene expression at the mid-developmental transition is both highly conserved among them, yet divergent relative to other species.


Subject(s)
Body Patterning , Embryonic Development , Phylogeny , Animals , Body Patterning/genetics , Conserved Sequence/genetics , Embryonic Development/genetics , Evolution, Molecular , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Genes, Developmental/genetics , Models, Biological , Phenotype , Species Specificity , Transcriptome/genetics
14.
Nature ; 538(7625): 336-343, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27762356

ABSTRACT

To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of 'fossil' transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17-18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.


Subject(s)
Evolution, Molecular , Genome/genetics , Phylogeny , Tetraploidy , Xenopus laevis/genetics , Animals , Chromosomes/genetics , Conserved Sequence/genetics , DNA Transposable Elements/genetics , Diploidy , Female , Gene Deletion , Gene Expression Profiling , Karyotype , Molecular Sequence Annotation , Mutagenesis/genetics , Pseudogenes , Xenopus/genetics
15.
Proc Natl Acad Sci U S A ; 116(46): 22915-22917, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31659034

ABSTRACT

Transposable elements are one of the major contributors to genome-size differences in metazoans. Despite this, relatively little is known about the evolutionary patterns of element expansions and the element families involved. Here we report a broad genomic sampling within the genus Hydra, a freshwater cnidarian at the focal point of diverse research in regeneration, symbiosis, biogeography, and aging. We find that the genome of Hydra is the result of an expansion event involving long interspersed nuclear elements and in particular a single family of the chicken repeat 1 (CR1) class. This expansion is unique to a subgroup of the genus Hydra, the brown hydras, and is absent in the green hydra, which has a repeat landscape similar to that of other cnidarians. These features of the genome make Hydra attractive for studies of transposon-driven genome expansions and speciation.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Hydra/genetics , Animals , Genome Size , Hydra/classification , Phylogeny
16.
Proc Natl Acad Sci U S A ; 116(8): 3030-3035, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30635418

ABSTRACT

Microbes have been critical drivers of evolutionary innovation in animals. To understand the processes that influence the origin of specialized symbiotic organs, we report the sequencing and analysis of the genome of Euprymna scolopes, a model cephalopod with richly characterized host-microbe interactions. We identified large-scale genomic reorganization shared between E. scolopes and Octopus bimaculoides and posit that this reorganization has contributed to the evolution of cephalopod complexity. To reveal genomic signatures of host-symbiont interactions, we focused on two specialized organs of E. scolopes: the light organ, which harbors a monoculture of Vibrio fischeri, and the accessory nidamental gland (ANG), a reproductive organ containing a bacterial consortium. Our findings suggest that the two symbiotic organs within E. scolopes originated by different evolutionary mechanisms. Transcripts expressed in these microbe-associated tissues displayed their own unique signatures in both coding sequences and the surrounding regulatory regions. Compared with other tissues, the light organ showed an abundance of genes associated with immunity and mediating light, whereas the ANG was enriched in orphan genes known only from E. scolopes Together, these analyses provide evidence for different patterns of genomic evolution of symbiotic organs within a single host.


Subject(s)
Bacteria/isolation & purification , Host Microbial Interactions/genetics , Octopodiformes/microbiology , Symbiosis/genetics , Aliivibrio fischeri/genetics , Aliivibrio fischeri/isolation & purification , Animals , Bacteria/classification , Bacteria/genetics , Cephalopoda/genetics , Cephalopoda/microbiology , Decapodiformes/genetics , Decapodiformes/microbiology , Genome/genetics , Octopodiformes/genetics
17.
Mol Ecol ; 30(4): 955-972, 2021 02.
Article in English | MEDLINE | ID: mdl-33305470

ABSTRACT

Factors ranging from ecological opportunity to genome composition might explain why only some lineages form adaptive radiations. While being rare, particular systems can provide natural experiments within an identical ecological setting where species numbers and phenotypic divergence in two closely related lineages are notably different. We investigated one such natural experiment using two de novo assembled and 40 resequenced genomes and asked why two closely related Neotropical cichlid fish lineages, the Amphilophus citrinellus species complex (Midas cichlids; radiating) and Archocentrus centrarchus (Flyer cichlid; nonradiating), have resulted in such disparate evolutionary outcomes. Although both lineages inhabit many of the same Nicaraguan lakes, whole-genome inferred demography suggests that priority effects are not likely to be the cause of the dissimilarities. Also, genome-wide levels of selection, transposable element dynamics, gene family expansion, major chromosomal rearrangements and the number of genes under positive selection were not markedly different between the two lineages. To more finely investigate particular subsets of the genome that have undergone adaptive divergence in Midas cichlids, we also examined if there was evidence for 'molecular pre-adaptation' in regions identified by QTL mapping of repeatedly diverging adaptive traits. Although most of our analyses failed to pinpoint substantial genomic differences, we did identify functional categories containing many genes under positive selection that provide candidates for future studies on the propensity of Midas cichlids to radiate. Our results point to a disproportionate role of local, rather than genome-wide factors underlying the propensity for these cichlid fishes to adaptively radiate.


Subject(s)
Cichlids , Animals , Biological Evolution , Cichlids/genetics , Genetic Speciation , Genomics , Lakes , Phylogeny
18.
Nature ; 524(7564): 220-4, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26268193

ABSTRACT

Coleoid cephalopods (octopus, squid and cuttlefish) are active, resourceful predators with a rich behavioural repertoire. They have the largest nervous systems among the invertebrates and present other striking morphological innovations including camera-like eyes, prehensile arms, a highly derived early embryogenesis and a remarkably sophisticated adaptive colouration system. To investigate the molecular bases of cephalopod brain and body innovations, we sequenced the genome and multiple transcriptomes of the California two-spot octopus, Octopus bimaculoides. We found no evidence for hypothesized whole-genome duplications in the octopus lineage. The core developmental and neuronal gene repertoire of the octopus is broadly similar to that found across invertebrate bilaterians, except for massive expansions in two gene families previously thought to be uniquely enlarged in vertebrates: the protocadherins, which regulate neuronal development, and the C2H2 superfamily of zinc-finger transcription factors. Extensive messenger RNA editing generates transcript and protein diversity in genes involved in neural excitability, as previously described, as well as in genes participating in a broad range of other cellular functions. We identified hundreds of cephalopod-specific genes, many of which showed elevated expression levels in such specialized structures as the skin, the suckers and the nervous system. Finally, we found evidence for large-scale genomic rearrangements that are closely associated with transposable element expansions. Our analysis suggests that substantial expansion of a handful of gene families, along with extensive remodelling of genome linkage and repetitive content, played a critical role in the evolution of cephalopod morphological innovations, including their large and complex nervous systems.


Subject(s)
Animal Structures/anatomy & histology , Animal Structures/metabolism , Evolution, Molecular , Genome/genetics , Nervous System/anatomy & histology , Octopodiformes/anatomy & histology , Octopodiformes/genetics , Animals , Cadherins/genetics , DNA Copy Number Variations/genetics , DNA Transposable Elements/genetics , Decapodiformes/genetics , Genomics , Ion Channels/genetics , Ion Channels/metabolism , Nervous System/metabolism , Octopodiformes/classification , Organ Specificity , Phylogeny , RNA Editing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Species Specificity , Transcription Factors/genetics , Zinc Fingers
19.
Nature ; 527(7579): 459-65, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26580012

ABSTRACT

Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.


Subject(s)
Chordata, Nonvertebrate/genetics , Evolution, Molecular , Genome/genetics , Animals , Chordata, Nonvertebrate/classification , Conserved Sequence/genetics , Echinodermata/classification , Echinodermata/genetics , Multigene Family/genetics , Phylogeny , Signal Transduction , Synteny/genetics , Transforming Growth Factor beta
20.
Bioessays ; 41(12): e1900073, 2019 12.
Article in English | MEDLINE | ID: mdl-31664724

ABSTRACT

How genomic innovation translates into organismal organization remains largely unanswered. Possessing the largest invertebrate nervous system, in conjunction with many species-specific organs, coleoid cephalopods (octopuses, squids, cuttlefishes) provide exciting model systems to investigate how organismal novelties evolve. However, dissecting these processes requires novel approaches that enable deeper interrogation of genome evolution. Here, the existence of specific sets of genomic co-evolutionary signatures between expanded gene families, genome reorganization, and novel genes is posited. It is reasoned that their co-evolution has contributed to the complex organization of cephalopod nervous systems and the emergence of ecologically unique organs. In the course of reviewing this field, how the first cephalopod genomic studies have begun to shed light on the molecular underpinnings of morphological novelty is illustrated and their impact on directing future research is described. It is argued that the application and evolutionary profiling of evolutionary signatures from these studies will help identify and dissect the organismal principles of cephalopod innovations. By providing specific examples, the implications of this approach both within and beyond cephalopod biology are discussed.


Subject(s)
Cephalopoda/genetics , Genome/genetics , Genomics/methods , Animals , Cephalopoda/classification , Evolution, Molecular , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL