Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters

Publication year range
1.
Cell ; 181(3): 604-620.e22, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32259486

ABSTRACT

During embryonic and postnatal development, organs and tissues grow steadily to achieve their final size at the end of puberty. However, little is known about the cellular dynamics that mediate postnatal growth. By combining in vivo clonal lineage tracing, proliferation kinetics, single-cell transcriptomics, and in vitro micro-pattern experiments, we resolved the cellular dynamics taking place during postnatal skin epidermis expansion. Our data revealed that harmonious growth is engineered by a single population of developmental progenitors presenting a fixed fate imbalance of self-renewing divisions with an ever-decreasing proliferation rate. Single-cell RNA sequencing revealed that epidermal developmental progenitors form a more uniform population compared with adult stem and progenitor cells. Finally, we found that the spatial pattern of cell division orientation is dictated locally by the underlying collagen fiber orientation. Our results uncover a simple design principle of organ growth where progenitors and differentiated cells expand in harmony with their surrounding tissues.


Subject(s)
Epidermal Cells/metabolism , Epidermis/growth & development , Skin/growth & development , Animals , Animals, Outbred Strains , Cell Differentiation/physiology , Cell Division/physiology , Cell Lineage/genetics , Cell Proliferation/physiology , Cells, Cultured , Epidermal Cells/pathology , Epidermis/metabolism , Female , Male , Mice , Mice, Transgenic , Stem Cells/cytology
2.
Immunity ; 57(3): 600-611.e6, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38447570

ABSTRACT

Plasma cells that emerge after infection or vaccination exhibit heterogeneous lifespans; most survive for days to months, whereas others persist for decades, providing antigen-specific long-term protection. We developed a mathematical framework to explore the dynamics of plasma cell removal and its regulation by survival factors. Analyses of antibody persistence following hepatitis A and B and HPV vaccination revealed specific patterns of longevity and heterogeneity within and between responses, implying that this process is fine-tuned near a critical "flat" state between two dynamic regimes. This critical state reflects the tuning of rates of the underlying regulatory network and is highly sensitive to variation in parameters, which amplifies lifespan differences between cells. We propose that fine-tuning is the generic outcome of competition over shared survival signals, with a competition-based mechanism providing a unifying explanation for a wide range of experimental observations, including the dynamics of plasma cell accumulation and the effects of survival factor deletion. Our theory is testable, and we provide specific predictions.


Subject(s)
Longevity , Plasma Cells , Antibodies , Vaccination , Antigens
3.
Cell ; 171(1): 242-255.e27, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28938116

ABSTRACT

The morphogenesis of branched organs remains a subject of abiding interest. Although much is known about the underlying signaling pathways, it remains unclear how macroscopic features of branched organs, including their size, network topology, and spatial patterning, are encoded. Here, we show that, in mouse mammary gland, kidney, and human prostate, these features can be explained quantitatively within a single unifying framework of branching and annihilating random walks. Based on quantitative analyses of large-scale organ reconstructions and proliferation kinetics measurements, we propose that morphogenesis follows from the proliferative activity of equipotent tips that stochastically branch and randomly explore their environment but compete neutrally for space, becoming proliferatively inactive when in proximity with neighboring ducts. These results show that complex branched epithelial structures develop as a self-organized process, reliant upon a strikingly simple but generic rule, without recourse to a rigid and deterministic sequence of genetically programmed events.


Subject(s)
Kidney/growth & development , Mammary Glands, Human/growth & development , Models, Biological , Morphogenesis , Prostate/growth & development , Animals , Female , Humans , Kidney/embryology , Male , Mammary Glands, Human/embryology , Mice , Prostate/embryology
4.
Cell ; 159(4): 775-88, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417155

ABSTRACT

Radial glial progenitors (RGPs) are responsible for producing nearly all neocortical neurons. To gain insight into the patterns of RGP division and neuron production, we quantitatively analyzed excitatory neuron genesis in the mouse neocortex using Mosaic Analysis with Double Markers, which provides single-cell resolution of progenitor division patterns and potential in vivo. We found that RGPs progress through a coherent program in which their proliferative potential diminishes in a predictable manner. Upon entry into the neurogenic phase, individual RGPs produce ?8-9 neurons distributed in both deep and superficial layers, indicating a unitary output in neuronal production. Removal of OTX1, a transcription factor transiently expressed in RGPs, results in both deep- and superficial-layer neuron loss and a reduction in neuronal unit size. Moreover, ?1/6 of neurogenic RGPs proceed to produce glia. These results suggest that progenitor behavior and histogenesis in the mammalian neocortex conform to a remarkably orderly and deterministic program.


Subject(s)
Neocortex/cytology , Neurogenesis , Animals , Mice , Neuroglia/metabolism , Neurons/metabolism , Otx Transcription Factors/metabolism , Staining and Labeling/methods , Stem Cells/metabolism
5.
Nature ; 607(7919): 548-554, 2022 07.
Article in English | MEDLINE | ID: mdl-35831497

ABSTRACT

The morphology and functionality of the epithelial lining differ along the intestinal tract, but tissue renewal at all sites is driven by stem cells at the base of crypts1-3. Whether stem cell numbers and behaviour vary at different sites is unknown. Here we show using intravital microscopy that, despite similarities in the number and distribution of proliferative cells with an Lgr5 signature in mice, small intestinal crypts contain twice as many effective stem cells as large intestinal crypts. We find that, although passively displaced by a conveyor-belt-like upward movement, small intestinal cells positioned away from the crypt base can function as long-term effective stem cells owing to Wnt-dependent retrograde cellular movement. By contrast, the near absence of retrograde movement in the large intestine restricts cell repositioning, leading to a reduction in effective stem cell number. Moreover, after suppression of the retrograde movement in the small intestine, the number of effective stem cells is reduced, and the rate of monoclonal conversion of crypts is accelerated. Together, these results show that the number of effective stem cells is determined by active retrograde movement, revealing a new channel of stem cell regulation that can be experimentally and pharmacologically manipulated.


Subject(s)
Cell Count , Cell Movement , Intestines , Stem Cells , Animals , Intestinal Mucosa/cytology , Intestine, Small/cytology , Intestines/cytology , Mice , Receptors, G-Protein-Coupled , Stem Cells/cytology , Wnt Proteins
6.
Nature ; 610(7930): 190-198, 2022 10.
Article in English | MEDLINE | ID: mdl-36131018

ABSTRACT

Although melanoma is notorious for its high degree of heterogeneity and plasticity1,2, the origin and magnitude of cell-state diversity remains poorly understood. Equally, it is unclear whether growth and metastatic dissemination are supported by overlapping or distinct melanoma subpopulations. Here, by combining mouse genetics, single-cell and spatial transcriptomics, lineage tracing and quantitative modelling, we provide evidence of a hierarchical model of tumour growth that mirrors the cellular and molecular logic underlying the cell-fate specification and differentiation of the embryonic neural crest. We show that tumorigenic competence is associated with a spatially localized perivascular niche, a phenotype acquired through an intercellular communication pathway established by endothelial cells. Consistent with a model in which only a fraction of cells are fated to fuel growth, temporal single-cell tracing of a population of melanoma cells with a mesenchymal-like state revealed that these cells do not contribute to primary tumour growth but, instead, constitute a pool of metastatic initiating cells that switch cell identity while disseminating to secondary organs. Our data provide a spatially and temporally resolved map of the diversity and trajectories of melanoma cell states and suggest that the ability to support growth and metastasis are limited to distinct pools of cells. The observation that these phenotypic competencies can be dynamically acquired after exposure to specific niche signals warrant the development of therapeutic strategies that interfere with the cancer cell reprogramming activity of such microenvironmental cues.


Subject(s)
Cell Proliferation , Melanoma , Neoplasm Metastasis , Animals , Cell Communication , Cell Differentiation , Cell Lineage , Cell Tracking , Cellular Reprogramming , Endothelial Cells , Melanoma/genetics , Melanoma/pathology , Mesoderm/pathology , Mice , Neoplasm Metastasis/pathology , Neural Crest/embryology , Phenotype , Single-Cell Analysis , Transcriptome , Tumor Microenvironment
7.
Nature ; 594(7863): 442-447, 2021 06.
Article in English | MEDLINE | ID: mdl-34079126

ABSTRACT

Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1-3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model-the Red2Onco system-that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones.


Subject(s)
Colorectal Neoplasms/pathology , Intestine, Small/pathology , Neoplastic Stem Cells/pathology , Oncogenes , Stem Cell Niche , Animals , Clone Cells/pathology , Colorectal Neoplasms/genetics , Female , Intestine, Small/metabolism , Male , Mice , Mutation , Neoplastic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Reproducibility of Results , Single-Cell Analysis , Stem Cell Niche/genetics , Tumor Microenvironment , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway
8.
Cell ; 145(6): 851-62, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21663791

ABSTRACT

In adult tissues, an exquisite balance exists between stem cell proliferation and the generation of differentiated offspring. Classically, it has been argued that this balance is obtained at the level of a single stem cell, which divides strictly into a new stem cell and a progenitor. However, recent evidence suggests that balance can also be achieved at the level of the stem cell population. Some stem cells might be lost due to differentiation or damage, whereas others divide symmetrically to fill this gap. Here, we consider the general strategies for stem cell self-renewal and review the evidence for stochastic stem cell fate in adult tissues across a range of tissue types and organisms.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Cell Division , Cell Lineage , Drosophila/cytology , Humans
9.
Nature ; 584(7820): 268-273, 2020 08.
Article in English | MEDLINE | ID: mdl-32728211

ABSTRACT

The ability of the skin to grow in response to stretching has been exploited in reconstructive surgery1. Although the response of epidermal cells to stretching has been studied in vitro2,3, it remains unclear how mechanical forces affect their behaviour in vivo. Here we develop a mouse model in which the consequences of stretching on skin epidermis can be studied at single-cell resolution. Using a multidisciplinary approach that combines clonal analysis with quantitative modelling and single-cell RNA sequencing, we show that stretching induces skin expansion by creating a transient bias in the renewal activity of epidermal stem cells, while a second subpopulation of basal progenitors remains committed to differentiation. Transcriptional and chromatin profiling identifies how cell states and gene-regulatory networks are modulated by stretching. Using pharmacological inhibitors and mouse mutants, we define the step-by-step mechanisms that control stretch-mediated tissue expansion at single-cell resolution in vivo.


Subject(s)
Mechanotransduction, Cellular/physiology , Single-Cell Analysis , Skin/cytology , Skin/growth & development , Adaptor Proteins, Signal Transducing/metabolism , Adherens Junctions/metabolism , Animals , Base Sequence , Cell Cycle Proteins/metabolism , Cell Differentiation/drug effects , Cell Self Renewal/drug effects , Chromatin/drug effects , Chromatin/genetics , Chromatin Assembly and Disassembly/drug effects , Clone Cells/cytology , Clone Cells/drug effects , Clone Cells/metabolism , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Regulatory Networks/drug effects , Hydrogels/administration & dosage , Hydrogels/pharmacology , Mechanotransduction, Cellular/drug effects , Mechanotransduction, Cellular/genetics , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation , RNA, Messenger/genetics , RNA-Seq , Skin/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Trans-Activators/antagonists & inhibitors , Trans-Activators/metabolism , Transcription Factor AP-1/metabolism , Transcription, Genetic/drug effects , YAP-Signaling Proteins
10.
Nat Rev Mol Cell Biol ; 14(8): 489-502, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23860235

ABSTRACT

During embryonic and postnatal development, the different cells types that form adult tissues must be generated and specified in a precise temporal manner. During adult life, most tissues undergo constant renewal to maintain homeostasis. Lineage-tracing and genetic labelling technologies are beginning to shed light on the mechanisms and dynamics of stem and progenitor cell fate determination during development, tissue maintenance and repair, as well as their dysregulation in tumour formation. Statistical approaches, based on proliferation assays and clonal fate analyses, provide quantitative insights into cell kinetics and fate behaviour. These are powerful techniques to address new questions and paradigms in transgenic mouse models and other model systems.


Subject(s)
Cell Lineage/physiology , Cell Tracking/methods , Stem Cells/physiology , Adult , Animals , Humans , Kinetics , Mice , Mice, Transgenic , Models, Biological
11.
Cell ; 143(1): 134-44, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20887898

ABSTRACT

Intestinal stem cells, characterized by high Lgr5 expression, reside between Paneth cells at the small intestinal crypt base and divide every day. We have carried out fate mapping of individual stem cells by generating a multicolor Cre-reporter. As a population, Lgr5(hi) stem cells persist life-long, yet crypts drift toward clonality within a period of 1-6 months. We have collected short- and long-term clonal tracing data of individual Lgr5(hi) cells. These reveal that most Lgr5(hi) cell divisions occur symmetrically and do not support a model in which two daughter cells resulting from an Lgr5(hi) cell division adopt divergent fates (i.e., one Lgr5(hi) cell and one transit-amplifying [TA] cell per division). The cellular dynamics are consistent with a model in which the resident stem cells double their numbers each day and stochastically adopt stem or TA fates. Quantitative analysis shows that stem cell turnover follows a pattern of neutral drift dynamics.


Subject(s)
Cell Lineage , Intestine, Small/cytology , Stem Cells/cytology , Animals , Clone Cells , Mice , Models, Biological , Receptors, G-Protein-Coupled/metabolism
12.
Nature ; 570(7759): 107-111, 2019 06.
Article in English | MEDLINE | ID: mdl-31092921

ABSTRACT

Adult intestinal stem cells are located at the bottom of crypts of Lieberkühn, where they express markers such as LGR51,2 and fuel the constant replenishment of the intestinal epithelium1. Although fetal LGR5-expressing cells can give rise to adult intestinal stem cells3,4, it remains unclear whether this population in the patterned epithelium represents unique intestinal stem-cell precursors. Here we show, using unbiased quantitative lineage-tracing approaches, biophysical modelling and intestinal transplantation, that all cells of the mouse intestinal epithelium-irrespective of their location and pattern of LGR5 expression in the fetal gut tube-contribute actively to the adult intestinal stem cell pool. Using 3D imaging, we find that during fetal development the villus undergoes gross remodelling and fission. This brings epithelial cells from the non-proliferative villus into the proliferative intervillus region, which enables them to contribute to the adult stem-cell niche. Our results demonstrate that large-scale remodelling of the intestinal wall and cell-fate specification are closely linked. Moreover, these findings provide a direct link between the observed plasticity and cellular reprogramming of differentiating cells in adult tissues following damage5-9, revealing that stem-cell identity is an induced rather than a hardwired property.


Subject(s)
Cell Lineage , Intestines/cytology , Stem Cells/cytology , Animals , Cell Differentiation , Cellular Reprogramming , Female , Fetus/cytology , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestines/growth & development , Male , Mice , Receptors, G-Protein-Coupled/metabolism , Regeneration , Stem Cell Niche
13.
Nature ; 566(7745): 490-495, 2019 02.
Article in English | MEDLINE | ID: mdl-30787436

ABSTRACT

Across the animal kingdom, gastrulation represents a key developmental event during which embryonic pluripotent cells diversify into lineage-specific precursors that will generate the adult organism. Here we report the transcriptional profiles of 116,312 single cells from mouse embryos collected at nine sequential time points ranging from 6.5 to 8.5 days post-fertilization. We construct a molecular map of cellular differentiation from pluripotency towards all major embryonic lineages, and explore the complex events involved in the convergence of visceral and primitive streak-derived endoderm. Furthermore, we use single-cell profiling to show that Tal1-/- chimeric embryos display defects in early mesoderm diversification, and we thus demonstrate how combining temporal and transcriptional information can illuminate gene function. Together, this comprehensive delineation of mammalian cell differentiation trajectories in vivo represents a baseline for understanding the effects of gene mutations during development, as well as a roadmap for the optimization of in vitro differentiation protocols for regenerative medicine.


Subject(s)
Cell Differentiation/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Gastrulation , Organogenesis , Single-Cell Analysis , Animals , Cell Lineage/genetics , Chimera/embryology , Chimera/genetics , Chimera/metabolism , Endoderm/cytology , Endoderm/embryology , Endoderm/metabolism , Endothelium/cytology , Endothelium/embryology , Endothelium/metabolism , Female , Gastrulation/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Hematopoiesis/genetics , Male , Mesoderm/cytology , Mesoderm/embryology , Mice , Mutation/genetics , Myeloid Cells/cytology , Organogenesis/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Primitive Streak/cytology , Primitive Streak/embryology , T-Cell Acute Lymphocytic Leukemia Protein 1/deficiency , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics
14.
Genes Dev ; 30(11): 1261-77, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27284162

ABSTRACT

Lineage tracing has become the method of choice to study the fate and dynamics of stem cells (SCs) during development, homeostasis, and regeneration. However, transgenic and knock-in Cre drivers used to perform lineage tracing experiments are often dynamically, temporally, and heterogeneously expressed, leading to the initial labeling of different cell types and thereby complicating their interpretation. Here, we developed two methods: the first one based on statistical analysis of multicolor lineage tracing, allowing the definition of multipotency potential to be achieved with high confidence, and the second one based on lineage tracing at saturation to assess the fate of all SCs within a given lineage and the "flux" of cells between different lineages. Our analysis clearly shows that, whereas the prostate develops from multipotent SCs, only unipotent SCs mediate mammary gland (MG) development and adult tissue remodeling. These methods offer a rigorous framework to assess the lineage relationship and SC fate in different organs and tissues.


Subject(s)
Cell Lineage , Cytological Techniques/methods , Mammary Glands, Animal/cytology , Multipotent Stem Cells/cytology , Prostate/cytology , Animals , Cells, Cultured , Cytological Techniques/standards , Data Interpretation, Statistical , Female , Male , Mammary Glands, Animal/growth & development , Mice , Multipotent Stem Cells/physiology , Prostate/growth & development , Stem Cells/cytology , Stem Cells/physiology
15.
Gastroenterology ; 162(7): 1975-1989, 2022 06.
Article in English | MEDLINE | ID: mdl-35227778

ABSTRACT

BACKGROUND & AIMS: Epithelial wound healing is compromised and represents an unleveraged therapeutic target in inflammatory bowel disease (IBD). Intestinal epithelial cells exhibit plasticity that facilitates dedifferentiation and repair during the response to injury. However, it is not known whether epithelial cells of a neighboring organ can be activated to mediate re-epithelialization in acute colitis. Histological findings of a permanent squamous tissue structure in the distal colon in human IBD could suggest diverse cellular origins of repair-associated epithelium. Here, we tested whether skin-like cells from the anus mediate colonic re-epithelialization in murine colitis. METHODS: We studied dextran sulfate sodium-induced colitis and interleukin 10-deficient colitis in transgenic mice. We performed lineage tracing, 3-dimensional (3D) imaging, single-cell transcriptomics, and biophysical modeling to map squamous cell fates and to identify squamous cell types involved in colonic repair. RESULTS: In acute and chronic colitis, we found a large squamous epithelium, called squamous neo-epithelium of the colon (SNEC), near the anorectal junction. Neighboring squamous cells of the anus rapidly migrate into the ulcerated colon and establish this permanent epithelium of crypt-like morphology. These squamous cells derive from a small unique transition zone, distal to the border of colonic and anal epithelium, that resists colitic injury. The cells of this zone have a pre-loaded program of colonic differentiation and further upregulate key aspects of colonic epithelium during repair. CONCLUSION: Transitional anal cells represent unique reserve cells capable of rebuilding epithelial structures in the colon after colitis. Further study of these cells could reveal novel approaches to direct mucosal healing in inflammation and disease.


Subject(s)
Carcinoma, Squamous Cell , Colitis , Inflammatory Bowel Diseases , Anal Canal/pathology , Animals , Carcinoma, Squamous Cell/pathology , Colitis/metabolism , Colon/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Epithelial Cells/pathology , Humans , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/pathology , Mice , Mice, Inbred C57BL , Re-Epithelialization
16.
Nat Methods ; 17(4): 414-421, 2020 04.
Article in English | MEDLINE | ID: mdl-32203388

ABSTRACT

Bulk and single-cell DNA sequencing has enabled reconstructing clonal substructures of somatic tissues from frequency and cooccurrence patterns of somatic variants. However, approaches to characterize phenotypic variations between clones are not established. Here we present cardelino (https://github.com/single-cell-genetics/cardelino), a computational method for inferring the clonal tree configuration and the clone of origin of individual cells assayed using single-cell RNA-seq (scRNA-seq). Cardelino flexibly integrates information from imperfect clonal trees inferred based on bulk exome-seq data, and sparse variant alleles expressed in scRNA-seq data. We apply cardelino to a published cancer dataset and to newly generated matched scRNA-seq and exome-seq data from 32 human dermal fibroblast lines, identifying hundreds of differentially expressed genes between cells from different somatic clones. These genes are frequently enriched for cell cycle and proliferation pathways, indicating a role for cell division genes in somatic evolution in healthy skin.


Subject(s)
Fibroblasts/metabolism , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Software , Algorithms , Cell Cycle , Cell Proliferation , Humans , Melanoma , Mutation , Transcriptome
17.
Nature ; 542(7641): 313-317, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28135720

ABSTRACT

During puberty, the mouse mammary gland develops into a highly branched epithelial network. Owing to the absence of exclusive stem cell markers, the location, multiplicity, dynamics and fate of mammary stem cells (MaSCs), which drive branching morphogenesis, are unknown. Here we show that morphogenesis is driven by proliferative terminal end buds that terminate or bifurcate with near equal probability, in a stochastic and time-invariant manner, leading to a heterogeneous epithelial network. We show that the majority of terminal end bud cells function as highly proliferative, lineage-committed MaSCs that are heterogeneous in their expression profile and short-term contribution to ductal extension. Yet, through cell rearrangements during terminal end bud bifurcation, each MaSC is able to contribute actively to long-term growth. Our study shows that the behaviour of MaSCs is not directly linked to a single expression profile. Instead, morphogenesis relies upon lineage-restricted heterogeneous MaSC populations that function as single equipotent pools in the long term.


Subject(s)
Cell Lineage , Mammary Glands, Animal/cytology , Morphogenesis , Stem Cells/cytology , Stem Cells/metabolism , Animals , Cell Proliferation , Female , Gene Expression Profiling , Mice , Models, Molecular , Sexual Maturation , Single-Cell Analysis , Stochastic Processes
18.
Nature ; 549(7671): 227-232, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28854171

ABSTRACT

Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare 'outlier' clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.


Subject(s)
Cell Differentiation , Cell Lineage , Cell Tracking , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Animals , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Proliferation , Clone Cells/drug effects , Clone Cells/pathology , Epigenesis, Genetic , Female , Glioblastoma/drug therapy , Heterografts , Humans , Mice , Neoplasm Invasiveness , Neoplasm Transplantation , Neoplastic Stem Cells/drug effects , Phenotype , Stochastic Processes
20.
Proc Natl Acad Sci U S A ; 117(29): 16969-16975, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32611816

ABSTRACT

Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common ("universal") functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.


Subject(s)
Cell Lineage , Cell Self Renewal , Stem Cell Niche , Animals , Cell Survival , Female , Homeostasis , Intestines/cytology , Intestines/growth & development , Kidney/cytology , Kidney/growth & development , Mammary Glands, Animal/cytology , Mammary Glands, Animal/growth & development , Mice , Models, Theoretical , Signal-To-Noise Ratio , Stem Cells/cytology , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL