Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Cell ; 161(3): 581-594, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25910209

ABSTRACT

Understanding how functional lipid domains in live cell membranes are generated has posed a challenge. Here, we show that transbilayer interactions are necessary for the generation of cholesterol-dependent nanoclusters of GPI-anchored proteins mediated by membrane-adjacent dynamic actin filaments. We find that long saturated acyl-chains are required for forming GPI-anchor nanoclusters. Simultaneously, at the inner leaflet, long acyl-chain-containing phosphatidylserine (PS) is necessary for transbilayer coupling. All-atom molecular dynamics simulations of asymmetric multicomponent-membrane bilayers in a mixed phase provide evidence that immobilization of long saturated acyl-chain lipids at either leaflet stabilizes cholesterol-dependent transbilayer interactions forming local domains with characteristics similar to a liquid-ordered (lo) phase. This is verified by experiments wherein immobilization of long acyl-chain lipids at one leaflet effects transbilayer interactions of corresponding lipids at the opposite leaflet. This suggests a general mechanism for the generation and stabilization of nanoscale cholesterol-dependent and actin-mediated lipid clusters in live cell membranes.


Subject(s)
Lipid-Linked Proteins/metabolism , Actins/metabolism , Animals , CHO Cells , Cell Membrane/metabolism , Cricetulus , Glycosylphosphatidylinositols/metabolism , Molecular Dynamics Simulation , Phosphatidylserines/metabolism
2.
J Transl Med ; 22(1): 370, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637842

ABSTRACT

JAK-STAT signalling pathway inhibitors have emerged as promising therapeutic agents for the treatment of hair loss. Among different JAK isoforms, JAK3 has become an ideal target for drug discovery because it only regulates a narrow spectrum of γc cytokines. Here, we report the discovery of MJ04, a novel and highly selective 3-pyrimidinylazaindole based JAK3 inhibitor, as a potential hair growth promoter with an IC50 of 2.03 nM. During in vivo efficacy assays, topical application of MJ04 on DHT-challenged AGA and athymic nude mice resulted in early onset of hair regrowth. Furthermore, MJ04 significantly promoted the growth of human hair follicles under ex-vivo conditions. MJ04 exhibited a reasonably good pharmacokinetic profile and demonstrated a favourable safety profile under in vivo and in vitro conditions. Taken together, we report MJ04 as a highly potent and selective JAK3 inhibitor that exhibits overall properties suitable for topical drug development and advancement to human clinical trials.


Subject(s)
Drug Development , Hair , Mice , Animals , Humans , Mice, Nude , Drug Discovery , Janus Kinase 3
3.
J Nat Prod ; 87(2): 167-175, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38355400

ABSTRACT

(-)-trans-Δ9-Tetrahydrocannabinol (trans-(-)-Δ9-THC) has shown neuroprotective potential, but its medicinal benefits are not fully exploited due to the limitations of psychoactive properties. The lower homologues are non-psychoactive in nature but lack comprehensive scientific validation regarding neuroprotective potential. The present study describes the synthesis of non-psychoactive lower homologues of THC-type compounds and their neuroprotective potential. Both natural tetrahydro-cannabiorcol (trans-(-)-Δ9-THCO) and unnatural Δ9-tetrahydrocannabiorcol (trans-(+)-Δ9-THCO) were successfully synthesized starting from R-limonene and S-limonene, respectively, and investigated for neuroprotective potential in cellular models. The structures of both enantiomers were confirmed by NMR, HMBC, HQSC, NOESY, and COSY experiments. Results indicated that both enantiomers were nontoxic to the cells treated up to 50 µM. Neuroprotective properties of the enantiomers showed that treatments could significantly reverse the corticosterone-induced toxicity in SH-SY5Y cells and simultaneously cause elevated expression of brain-derived neurotrophic factor (BDNF). It was also observed that unnatural trans-(+)-Δ9-THCO displayed better activity than the natural enantiomer and can be further explored for its potential use in neuropathological ailments.


Subject(s)
Cannabinoids , Neuroblastoma , Humans , Dronabinol/pharmacology , Limonene , Neuroblastoma/drug therapy , Cannabinoids/chemistry , Cannabinoids/pharmacology
4.
PLoS Pathog ; 17(7): e1009706, 2021 07.
Article in English | MEDLINE | ID: mdl-34252168

ABSTRACT

Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.


Subject(s)
COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Virus Internalization/drug effects , Ammonium Chloride/pharmacology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Chloroquine/pharmacology , Clathrin/metabolism , Drug Synergism , Endocytosis/drug effects , Endocytosis/physiology , Endosomes/drug effects , Endosomes/metabolism , Humans , Hydrogen-Ion Concentration/drug effects , Hydroxychloroquine/administration & dosage , Macrolides/pharmacology , Niclosamide/administration & dosage , Niclosamide/pharmacology , Protein Binding/drug effects , Protein Domains , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/physiology , Vero Cells
5.
J Org Chem ; 87(7): 4489-4498, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35289168

ABSTRACT

Here, we report a three-step concise and stereoselective synthesis route to one of the most important phytocannabinoids, namely, (-)-cannabidiol (-CBD), from inexpensive and readily available starting material R-(+)-limonene. The synthesis involved the diastereoselective bifunctionalization of limonene, followed by effective elimination leading to the generation of key chiral p-mentha-2,8-dien-1-ol. The chiral p-mentha-2,8-dien-1-ol on coupling with olivetol under silver catalysis provided regiospecific (-)-CBD, contrary to reported ones which gave a mixture. The newly developed approach was further extended to its structural analogues cannabidiorcin and other tail/terpenyl-modified analogues. Moreover, its opposite isomer (+)-cannabidiol was also successfully synthesized from S-(-)-limonene.


Subject(s)
Cannabidiol
6.
Org Biomol Chem ; 20(24): 4942-4948, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35660834

ABSTRACT

Here, we report a s-trichlorotriazine (TCT, also known as cyanuric chloride) mediated one-pot general method for the conversion of carboxylic acids into ubiquitous functionalities such as carbamides, carbamates, carbamothioates, amides, and amines. The TCT-mediated activation of acids followed by azidation and heating led to the isocyanate formation via Curtius rearrangement which involves click chemistry in the presence of nucleophiles and provided the coupled product. The TCT was employed at ≤40 mol% with respect to the starting materials; however, its bulk availability and low cost provide a unique opportunity towards its applicability in the synthesis of functional molecules. The optimized conditions have also been successfully demonstrated for gram scale synthesis and late-stage functionalization of natural products and drugs such as podophyllotoxin, eugenol, diosgenin, geraniol and fluvoxamine.


Subject(s)
Amides , Amines , Amides/chemistry , Amines/chemistry , Carbamates/chemistry , Carboxylic Acids/chemistry , Click Chemistry , Nitrogen , Urea
7.
J Org Chem ; 85(12): 7757-7771, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32425042

ABSTRACT

First, total synthesis of the cell surface phospholipomannan anchor [ß-Manp-(1 → 2)-ß-Manp]n-(1 → 2)-ß-Manp-(1 → 2)-α-Manp-1 → P-(O → 6)-α-Manp-(1 → 2)-Inositol-1-P-(O → 1)-phytoceramide of Candida albicans is reported. The target phospholipomannan (PLM) anchor poses synthetic challenges such as the unusual kinetically controlled (1 → 2)-ß-oligomannan domain, anomeric phosphodiester, and unique phytoceramide lipid tail linked to the glycan through a phosphate group. The synthesis of PLM anchor was accomplished using a convergent block synthetic approach using three main appropriately protected building blocks: (1 → 2)-ß-tetramannan repeats, pseudodisaccharide, and phytoceramide-1-H-phosphonate. The most challenging (1 → 2)-ß-tetramannan domain was synthesized in one pot using the preactivation method. The phytoceramide-1-H-phosphonate was synthesized through an enantioselective A3 three-component coupling reaction. Finally, the phytoceramide-1-H-phosphonate moiety was coupled with pseudodisaccharide followed by deacetylation to produce the acceptor, which on subsequent coupling with tetramannosyl-H-phosphonate provided the fully protected PLM anchor. Final deprotection was successfully achieved by Pearlman's hydrogenation.


Subject(s)
Candida albicans , Glycolipids , Inositol , Polysaccharides
8.
J Org Chem ; 85(2): 716-725, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31829009

ABSTRACT

Here, we are reporting a multicomponent cascade reaction approach for the synthesis of ß-keto sulfones by exploiting differential reactivity pattern of substrates under open-atmosphere and metal-free conditions. The coupling partners are aryldiazonium salts, unsaturated compounds, and DABSO. The optimized conditions worked well with both alkenes and alkynes. Moreover, the reaction also works with metabisulfite for the source of sulfone. The controlled liquid chromatography-mass spectrometry and 18O-labelled experiments suggested that air is a source of the incoming oxygen atom of the keto group of ß-keto sulfones.

9.
Pulm Pharmacol Ther ; 48: 151-160, 2018 02.
Article in English | MEDLINE | ID: mdl-29174840

ABSTRACT

Recent tuberculosis (TB) drug discovery programme involve continuous pursuit for new chemical entity (NCE) which can be not only effective against both susceptible and resistant strains of Mycobacterium tuberculosis (Mtb) but also safe and faster acting with the target, thereby shortening the prolonged TB treatments. We have identified a potential nitrofuranyl methyl piperazine derivative, IIIM-MCD-211 as new antitubercular agent with minimum inhibitory concentration (MIC) value of 0.0072 µM against H37Rv strain. Objective of the present study is to investigate physicochemical, pharmacokinetic, efficacy and toxicity profile using in-silico, in-vitro and in-vivo model in comprehensive manner to assess the likelihood of developing IIIM-MCD-211 as a clinical candidate. Results of computational prediction reveal that compound does not violate Lipinski's, Veber's and Jorgensen's rule linked with drug like properties and oral bioavailability. Experimentally, IIIM-MCD-211 exhibits excellent lipophilicity that is optimal for oral administration. IIIM-MCD-211 displays evidence of P-glycoprotein (P-gp) induction but no inhibition ability in rhodamine cell exclusion assay. IIIM-MCD-211 shows high permeability and plasma protein binding based on parallel artificial membrane permeability assay (PAMPA) and rapid equilibrium dialysis (RED) assay model, respectively. IIIM-MCD-211 has adequate metabolic stability in rat liver microsomes (RLM) and favourable pharmacokinetics with admirable correlation during dose escalation study in Swiss mice. IIIM-MCD-211 has capability to appear into highly perfusable tissues. IIIM-MCD-211 is able to actively prevent progression of TB infection in chronic infection mice model. IIIM-MCD-211 shows no substantial cytotoxicity in HepG2 cell line. In acute toxicity study, significant increase of total white blood cell (WBC) count in treatment group as compared to control group is observed. Overall, amenable preclinical data make IIIM-MCD-211 ideal candidate for further development of oral anti-TB agent.


Subject(s)
Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/drug effects , Nitrofurans/therapeutic use , Piperazines/therapeutic use , Tuberculosis/drug therapy , Administration, Oral , Animals , Antitubercular Agents/administration & dosage , Antitubercular Agents/pharmacology , Antitubercular Agents/toxicity , Biological Availability , Computer Simulation , Disease Models, Animal , Disease Progression , Dose-Response Relationship, Drug , Drug Design , Female , Hep G2 Cells , Humans , Male , Mice , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Nitrofurans/administration & dosage , Nitrofurans/pharmacology , Nitrofurans/toxicity , Piperazines/administration & dosage , Piperazines/pharmacology , Piperazines/toxicity , Rats , Toxicity Tests, Acute
10.
J Org Chem ; 83(20): 12420-12431, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30238752

ABSTRACT

Herein, we report an original one-step, simple, room-temperature, regioselective Minisci reaction for the acylation of electron-deficient heteroarenes with alkynes. The method has broad functional group compatibility and gives exclusively monoacylated products in good to excellent yields. The mechanistic pathway was analyzed based on a series of experiments confirming the involvement of a radical pathway. The 18O-labeling experiment suggested that water is a source of oxygen in the acylated product, and head space GC-MS experiment shows the C-C cleavage occurs via release as CO2.

11.
J Org Chem ; 82(2): 1000-1012, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28013543

ABSTRACT

A metal-free one step coupling reaction between various N-azole rings and diverse α-C(sp3)-H containing amides has been developed under oxidative reaction conditions. Commercially available tetrabutyl ammonium iodide (TBAI) in the presence of terbutylhydroperoxide (TBHP), under neat reaction condition, efficiently catalyzed the coupling. Various azole types, such as 1H-benzotriazoles, 1H-1,2,3-triazoles, 1H-1,2,4-triazoles, 1H-tetrazoles, 1H-pyrazoles, and 1H-benzimidazoles, and α-C(sp3)-H containing amides, such as N,N-dimethylacetamide, N,N-dimethylbenzamide, N-methylacetamide, N,N-diethylacetamide, N-methylpyrrolidine, and pyrrolidine-2-one, were successfully employed for the coupling. A series of designed and controlled experiments were also performed in order to study the involvement of the different intermediates. Based on the evidence, a plausible mechanism is also proposed. These novel, simple, rapid, attractive, and straightforward transformations open the way of the construction of novel highly functionalized N-azoles via direct covalent N-H bond transformations onto N-C bonds. This approach allows to the synthesis of complex molecules requiring number of steps using classical synthetic ways. In addition, the range of α-C(sp3)-H containing amide substrates is virtually unlimited highlighting the potential value of this simple system for the construction of complex heterocyclic molecules, such as fused azoles derivatives.

12.
J Chem Inf Model ; 57(8): 1957-1969, 2017 08 28.
Article in English | MEDLINE | ID: mdl-28723151

ABSTRACT

Cyclin dependent kinases play a central role in cell cycle regulation which makes them a promising target with multifarious therapeutic potential. CDK2 regulates various events of the eukaryotic cell division cycle, and the pharmacological evidence indicates that overexpression of CDK2 causes abnormal cell-cycle regulation, which is directly associated with hyperproliferation of cancer cells. Therefore, CDK2 is regarded as a potential target molecule for anticancer medication. Thus, to decline CDK2 activity by potential lead compounds has proved to be an effective treatment for cancer. The availability of a large number of X-ray crystal structures and known inhibitors of CDK2 provides a gateway to perform efficient computational studies on this target. With the aim to identify new chemical entities from commercial libraries, with increased inhibitory potency for CDK2, ligand and structure based computational drug designing approaches were applied. A druglike library of 50,000 compounds from ChemDiv and ChemBridge databases was screened against CDK2, and 110 compounds were identified using the parallel application of these models. On in vitro evaluation of 40 compounds, seven compounds were found to have more than 50% inhibition at 10 µM. MD studies of the hits revealed the stability of these inhibitors and pivotal role of Glu81 and Leu83 for binding with CDK2. The overall study resulted in the identification of four new chemical entities possessing CDK2 inhibitory activity.


Subject(s)
Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Cyclin-Dependent Kinase 2/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Inhibitory Concentration 50 , Ligands , Protein Conformation
13.
Pulm Pharmacol Ther ; 40: 44-51, 2016 10.
Article in English | MEDLINE | ID: mdl-27457685

ABSTRACT

New compounds against tuberculosis are urgently needed to combat the crisis of drug resistance in tuberculosis (TB). We have identified a nitrodihydroimidazooxazole analog, IIIM-019 as a new anti-tubercular agent with a MIC of 0.23 µM against H37Rv. Physicochemical properties, in-vitro pharmacokinetics and in-vivo multiple-doses pharmacokinetics were studied for the compound. In silico physicochemical parameters and Lipinski's violations were determined for drug like properties. Lipophilicity was determined experimentally as Octanol-PBS partition coefficient (log P). Passive and active permeability of the compound was determined by PAMPA and Caco-2 cell permeability analysis, respectively. Plasma protein binding was determined by Rapid equilibrium dialysis. Metabolism by liver microsomes revealed the t1/2 and intrinsic clearance of the compound. Hepatotoxicity of IIIM-019 was determined alone and in combination to first line anti-tubercular drugs. The compound was also estimated for nuclear DNA damage. Single doses of IIIM-019 (2.5, 10, 25 and 100 mg/kg) were administered orally to Balb/c mice and the blood samples were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). IIIM-019 exhibited very good lipophilicity (log P) of 2.47 which makes it optimal for oral administration. The compound showed low solubility and permeability and high plasma protein binding. However, it was highly stable in rat liver microsomes with t1/2 > 2 h and very low intrinsic clearance. It was found to be non-hepatotoxic and did not induce any significant DNA damage at high concentrations even up to 100 µM. IIIM-019 showed satisfactory in-vivo pharmacokinetic properties. By increasing the dose from 2.5 mg/kg to 10 mg/kg, AUC0-t increased from 14935 ng h/ml to 81,478 ng h/ml. However the exposure of IIIM-019 in plasma suggested that the levels reached saturation at higher concentrations. The compound showed a good oral bioavailability of 58.7%. The results insinuate that IIIM-019 should undergo further development as a potential treatment for tuberculosis.


Subject(s)
Antitubercular Agents/administration & dosage , Mycobacterium tuberculosis/drug effects , Nitroimidazoles/administration & dosage , Oxazoles/administration & dosage , Tuberculosis/drug therapy , Administration, Oral , Animals , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/pharmacology , Area Under Curve , Biological Availability , Caco-2 Cells , Chromatography, Liquid , Dose-Response Relationship, Drug , Half-Life , Humans , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Nitroimidazoles/pharmacokinetics , Nitroimidazoles/pharmacology , Oxazoles/pharmacokinetics , Oxazoles/pharmacology , Rats , Rats, Wistar , Solubility , Tandem Mass Spectrometry
14.
J Org Chem ; 81(14): 5886-94, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27304317

ABSTRACT

Herein, we report a simple and metal-free method for the synthesis of N-azine sulfoximines by the nucleophilic substitution of azine N-oxides with NH-sulfoximines. The present method works at room temperature with wide functional group compatibility and gives several unprecedented N-azine sulfoximines. The reaction conditions were also found suitable with enantiopure substrates and furnished products without any racemization. It also finds an application in the sulfoximination of azine-based functional molecules such as 2,2'-bipyridine, 1,10-phenanthroline, and quinine.

15.
Org Biomol Chem ; 14(18): 4312-20, 2016 May 14.
Article in English | MEDLINE | ID: mdl-27086946

ABSTRACT

Here, we report a metal-free cross-coupling reaction of diazines and related heteroarenes with organoboron species via C-H functionalization. The optimized conditions represent a metal-free method for the activation of aryl/heteroarylboronic acids, which undergo coupling with diazines and related heteroarenes. Optimized conditions also find application in the synthesis of a pyrimidine-based potent CDK inhibitor, meriolin1.

16.
Appl Microbiol Biotechnol ; 100(12): 5415-26, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26887318

ABSTRACT

Shikimate kinase of Mycobacterium tuberculosis is involved in the biosynthesis of aromatic amino acids through shikimate pathway. The enzyme is essential for the survival of M. tuberculosis and is absent from mammals, thus providing an excellent opportunity for identifying new chemical entities to combat tuberculosis with a novel mechanism of action. In this study, an antitubercular library of 1000 compounds was screened against M. tuberculosis shikimate kinase (MtSK). This effort led to the identification of 20 inhibitors, among which five promising leads exhibited half maximal inhibitory concentration (IC50) values below 10 µM. The most potent inhibitor ("5631296") showed an IC50 value of 5.10 µM ± 0.6. The leads were further evaluated for the activity against multidrug-resistant (MDR)-TB, Gram-positive and Gram-negative bacterial strains, mode of action, docking simulations, and combinatorial study with three frontline anti-TB drugs. Compound "5491210" displayed a nearly synergistic activity with rifampicin, isoniazid, and ethambutol while compound "5631296" was synergistic with rifampicin. In vitro cytotoxicity against HepG2 cell line was evaluated and barring one compound; all were found to be non-toxic (SI > 10). In order to rule out mitochondrial toxicity, the promising inhibitors were also evaluated for cell cytotoxicity using galactose medium where compounds "5631296" and "5122752" appeared non-toxic. Upon comprehensive analysis, compound "5631296" was found to be the most promising MtSK inhibitor that was safe, synergistic with rifampicin, and bactericidal against M. tuberculosis.


Subject(s)
Antitubercular Agents/pharmacology , Enzyme Inhibitors/pharmacology , Gene Library , Mycobacterium tuberculosis/drug effects , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/isolation & purification , Antitubercular Agents/isolation & purification , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Rifampin/pharmacology
17.
J Org Chem ; 80(24): 11916-25, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26569335

ABSTRACT

Here, we have developed a mild and general method for the regioselective installation of benzyl, allyl, para-methoxybenzyl and naphthyl groups on cis-1,2-diols. The optimized method operates at room temperature using dimethyltin dichloride as catalyst and silver oxide as an additive. The present method works well with both sugars (such as mono- and disaccharides) and nonsugars (such as inositols, propan-1,2-diol, 1,2-cycloalkanediols and anhydroerythritol) and also provides comparatively better functional group compatibility.

18.
J Org Chem ; 80(22): 11588-92, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26485643

ABSTRACT

An efficient metal-free method for the synthesis of α-ketothioesters is described for the first time. This reaction features the ability of pyrrolidine to fine-tune the reaction between 2-oxoaldehyde and thiols through iminium to the desired product in moderate to good yields. As an advantage, no external oxidants or metal catalysts are required in our method. Reactions performed under modified conditions lead to an apparent balance in reactivity of secondary amine and thiols toward 2-oxoaldehydes.

19.
J Org Chem ; 80(3): 1929-36, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25588073

ABSTRACT

A metal-free cross-dehydrogenative coupling method for the synthesis of N-substituted azoles has been developed. The TBAI/TBHP system catalyzed the coupling of azoles with ethers and thioethers via α-C(sp(3))-H activation. Under the optimized conditions, a diverse range of un/substituted azoles such as 1H-benzimidazole, 9H-purine, 1H-benzotriazole, 1H-1,2,3-triazole, 1H-1,2,4-triazole, and 1H-pyrazole were successfully employed for coupling with various ethers and thioethers such as tetrahydrofuran, tetrahydropyran, 1,4-dioxane, diethyl ether, tetrahydrothiophene, and 1,3-dithiolane.


Subject(s)
Azoles/chemistry , Azoles/chemical synthesis , Ethers/chemistry , Metals/chemistry , Sulfides/chemistry , Triazoles/chemistry , Triazoles/chemical synthesis , Catalysis , Hydrogen Bonding , Molecular Structure
20.
Org Biomol Chem ; 13(46): 11341-50, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26419479

ABSTRACT

Here we have developed an effective metal-free dehydrogenative coupling method wherein α-oxyalkyl and alkyl radicals were generated from various ethers and alkanes to undergo coupling with a variety of electron-deficient heteroarenes such as un/substituted iso-quinolones, quinolines, pyridines, pyrazines and pyrimidines. The persulfate-acetone-water system was optimized for the dehydrogenative coupling with cyclic ethers which gave moderate to excellent yields of α-oxyalkyl containing heteroarenes. We have also optimized the conditions for coupling with cyclic alkanes and alicyclic ethers and demonstrated by conducting the reactions with a variety of electron-deficient heteroarenes. Further, the present method is also applicable to electron deficient arenes like naphthoquinones and moreover, it didn't require any external acid.

SELECTION OF CITATIONS
SEARCH DETAIL