Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Water Health ; 21(9): 1318-1324, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37756198

ABSTRACT

Chlorine disinfection is commonly applied to inactivate pathogenic viruses in drinking water treatment plants. However, the role of water quality in chlorine disinfection of viruses has not been investigated thoughtfully. In this study, we investigated the inactivation efficiency of coxsackievirus B5 (CVB5) by free chlorine using actual water samples collected from four full-scale drinking water treatment plants in Japan under strict turbidity management (less than 0.14 NTU) over a 12-month period. It was found that chlorine disinfection of CVB5 might not be affected by water quality. Japanese turbidity management might play an indirect role in controlling the efficiency of chlorine disinfection.


Subject(s)
Chlorine , Drinking Water , Chlorine/pharmacology , Enterovirus B, Human , Disinfection , Japan
2.
Water Sci Technol ; 82(7): 1272-1284, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33079708

ABSTRACT

The anaerobic ammonium oxidation (anammox) process holds great promise for treating nitrogen-contaminated water; stable nitrite-nitrogen (NO2 --N) production is significant to anammox performance. In this study, partial hydrogenotrophic denitrification (PHD) was used to stably and efficiently produce NO2 --N from nitrate-nitrogen (NO3 --N). An investigation of the effects of initial pH on the PHD process revealed that a high NO2 --N production efficiency (77.9%) could be ensured by setting an initial pH of 10.5. A combined PHD-anammox process was run for more than three months with maximal ammonium-nitrogen (NH4 +-N), NO3 --N, and total dissolved inorganic nitrogen removal efficiencies of 93.4, 98.0, and 86.9%, respectively. The NO2 --N to NH4 +-N and NO3 --N to NH4 +-N ratios indicated that various bioprocesses were involved in nitrogen removal during the anammox stage, and a 16S rRNA gene amplicon sequencing was performed to further clarify the composition of microbial communities and mechanisms involved in the nitrogen removal process.


Subject(s)
Denitrification , Nitrogen , Bioreactors , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL