Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Proc Natl Acad Sci U S A ; 112(1): 88-93, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25535371

ABSTRACT

Oxytocin is a nonapeptide involved in a wide range of physiologic and behavioral functions. Until recently, it was believed that an unmodified oxytocin sequence was present in all placental mammals. This study analyzed oxytocin (OXT) in 29 primate species and the oxytocin receptor (OXTR) in 21 of these species. We report here three novel OXT forms in the New World monkeys, as well as a more extensive distribution of a previously described variant (Leu8Pro). In structural terms, these OXTs share the same three low-energy conformations in solution during molecular dynamic simulations, with subtle differences in their side chains. A consistent signal of positive selection was detected in the Cebidae family, and OXT position 8 showed a statistically significant (P = 0.013) correlation with litter size. Several OXTR changes were identified, some of them promoting gain or loss of putative phosphorylation sites, with possible consequences for receptor internalization and desensitization. OXTR amino acid sites are under positive selection, and intramolecular and intermolecular coevolutionary processes with OXT were also detected. We suggest that some New World monkey OXT-OXTR forms can be correlated to male parental care through the increase of cross-reactivity with its correlated vasopressin system.


Subject(s)
Evolution, Molecular , Oxytocin/genetics , Primates/genetics , Receptors, Oxytocin/genetics , Selection, Genetic , Amino Acid Sequence , Animals , Base Sequence , Male , Molecular Sequence Data , Oxytocin/chemistry
2.
J Mol Neurosci ; 74(2): 47, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662144

ABSTRACT

Medulloblastoma (MB) is one of the most common pediatric brain tumors and it is estimated that one-third of patients will not achieve long-term survival. Conventional prognostic parameters have limited and unreliable correlations with MB outcome, presenting a major challenge for patients' clinical improvement. Acknowledging this issue, our aim was to build a gene signature and evaluate its potential as a new prognostic model for patients with the disease. In this study, we used six datasets totaling 1679 samples including RNA gene expression and DNA methylation data from primary MB as well as control samples from healthy cerebellum. We identified methylation-driven genes (MDGs) in MB, genes whose expression is correlated with their methylation. We employed LASSO regression, incorporating the MDGs as a parameter to develop the prognostic model. Through this approach, we derived a two-gene signature (GS-2) of candidate prognostic biomarkers for MB (CEMIP and NCBP3). Using a risk score model, we confirmed the GS-2 impact on overall survival (OS) with Kaplan-Meier analysis. We evaluated its robustness and accuracy with receiver operating characteristic curves predicting OS at 1, 3, and 5 years in multiple independent datasets. The GS-2 showed highly significant results as an independent prognostic biomarker compared to traditional MB markers. The methylation-regulated GS-2 risk score model can effectively classify patients with MB into high and low-risk, reinforcing the importance of this epigenetic modification in the disease. Such genes stand out as promising prognostic biomarkers with potential application for MB treatment.


Subject(s)
Biomarkers, Tumor , Cerebellar Neoplasms , DNA Methylation , Medulloblastoma , Transcriptome , Humans , Medulloblastoma/genetics , Medulloblastoma/mortality , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/mortality , Biomarkers, Tumor/genetics , Male , Female , Prognosis , Child , Child, Preschool
3.
FEBS Lett ; 597(19): 2446-2460, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37597508

ABSTRACT

Ewing sarcoma (ES) is a highly aggressive pediatric tumor driven by the RNA-binding protein EWS (EWS)/friend leukemia integration 1 transcription factor (FLI1) chimeric transcription factor, which is involved in epithelial-mesenchymal transition (EMT). EMT stabilizes a hybrid cell state, boosting metastatic potential and drug resistance. Nevertheless, the mechanisms underlying the maintenance of this hybrid phenotype in ES remain elusive. Our study proposes a logical EMT model for ES, highlighting zinc finger E-box-binding homeobox 2 (ZEB2), miR-145, and miR-200 circuits that maintain hybrid states. The model aligns with experimental findings and reveals a previously unknown circuit supporting the mesenchymal phenotype. These insights emphasize the role of ZEB2 in the maintenance of the hybrid state in ES.

4.
Neuromolecular Med ; 25(1): 64-74, 2023 03.
Article in English | MEDLINE | ID: mdl-35716340

ABSTRACT

Medulloblastoma (MB) is a malignant brain tumor that afflicts mostly children and adolescents and presents four distinct molecular subgroups, known as WNT, SHH, Group 3, and Group 4. ZEB1 is a transcription factor that promotes the expression of mesenchymal markers while restraining expression of epithelial and polarity genes. Because of ZEB1 involvement in cerebellum development, here we investigated the role of ZEB1 in MB. We found increased expression of ZEB1 in MB tumor samples compared to normal cerebellar tissue. Expression was higher in the SHH subgroup when compared to all other MB molecular subgroups. High ZEB1 expression was associated with poor prognosis in Group 3 and Group 4, whereas in patients with WNT tumors poorer prognosis were related to lower ZEB1 expression. There was a moderate correlation between ZEB1 and MYC expression in Group 3 and Group 4 MB. Treatment with the immunomodulator and histone deacetylase (HDAC) inhibitor fingolimod (FTY720) reduced ZEB1 expression specifically in D283 cells, which are representative of Group 3 and Group 4 MB. These findings reveal novel subgroup-specific associations of ZEB1 expression with survival in patients with MB and suggest that ZEB1 expression can be reduced by pharmacological agents that target HDAC activity.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Child , Adolescent , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Cerebellum , Histone Deacetylase Inhibitors/therapeutic use , Fingolimod Hydrochloride/therapeutic use , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
5.
Gene ; 862: 147281, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36775216

ABSTRACT

In the context of cancer predisposition syndromes, it is widely known that the correct interpretation of germline variants identified in multigene panel testing is essential for adequate genetic counseling and clinical decision making, in which variants of uncertain significance (VUS) are not considered actionable findings. Thus, their periodic re-evaluation using appropriate guidelines is notably important. In the present study, we compared the performance of the main variant classification guidelines (ACMG, Sherloc and ENIGMA) in variant reassessment, using as input a BRCA1/2 VUS case series (retrospective analysis) from Brazil, an ethnically diverse and admixed country with substantial challenges in VUS reclassification. As main findings, two of the 15 VUS analyzed were reclassified as likely pathogenic by the 3 guidelines, BRCA1 c.4987-3C > G (rs397509213) and BRCA2 c.7868A > G (rs80359012). Moreover, challenges in variant classification and reassessment are described and additional in silico data about structural impact of the variant BRCA2 c.7868A > G are provided. We hypothesize that the establishment of a framework to reassess VUS could improve this process in health centers that have not yet implemented this practice. Results of this study underscore that periodic monitoring of the functional, clinical, and bioinformatics data of a VUS by a multidisciplinary team are of utmost importance in clinical practice. When there is a specific guideline for a given gene, such as ENIGMA for BRCA1/2, it should be considered the first option for variant assessment. Finally, recruitment of VUS carriers and their relatives to participate in variant segregation studies and publication of VUS reclassification results in the international scientific literature should be encouraged.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Humans , Female , Retrospective Studies , Genetic Testing/methods , BRCA2 Protein/genetics , Genetic Counseling , Syndrome , BRCA1 Protein/genetics , Breast Neoplasms/genetics
6.
Neuromolecular Med ; 25(4): 573-585, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37740824

ABSTRACT

Medulloblastoma (MB) is a heterogeneous group of malignant pediatric brain tumors, divided into molecular groups with distinct biological features and prognoses. Currently available therapy often results in poor long-term quality of life for patients, which will be afflicted by neurological, neuropsychiatric, and emotional sequelae. Identifying novel therapeutic agents capable of targeting the tumors without jeopardizing patients' quality of life is imperative. Rosmarinic acid (RA) is a plant-derived compound whose action against a series of diseases including cancer has been investigated, with no side effects reported so far. Previous studies have not examined whether RA has effects in MB. Here, we show RA is cytotoxic against human Daoy (IC50 = 168 µM) and D283 (IC50 = 334 µM) MB cells. Exposure to RA for 48 h reduced histone deacetylase 1 (HDAC1) expression while increasing H3K9 hyperacetylation, reduced epidermal growth factor (EGFR) expression, and inhibited EGFR downstream targets extracellular-regulated kinase (ERK)1/2 and AKT in Daoy cells. These modifications were accompanied by increased expression of CDKN1A/p21, reduced expression of SOX2, and a decrease in proliferative rate. Treatment with RA also reduced cancer stem cell markers expression and neurosphere size. Taken together, our findings indicate that RA can reduce cell proliferation and stemness and induce cell cycle arrest in MB cells. Mechanisms mediating these effects may include targeting HDAC1, EGFR, and ERK signaling, and promoting p21 expression, possibly through an increase in H3K9ac and AKT deactivation. RA should be further investigated as a potential anticancer agent in experimental MB.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Humans , Child , Medulloblastoma/drug therapy , Medulloblastoma/pathology , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/therapeutic use , Proto-Oncogene Proteins c-akt , Quality of Life , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Cell Proliferation , Cerebellar Neoplasms/drug therapy , ErbB Receptors/metabolism , ErbB Receptors/pharmacology , ErbB Receptors/therapeutic use , Cell Line, Tumor
7.
Comput Biol Chem ; 99: 107714, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35763962

ABSTRACT

The Wnt pathway is important to regulate a variety of biochemical functions and can contribute to cancer development through its influence on the epithelial-mesenchymal transition (EMT). Multiple circuits have been reported to participate in the regulation of the Wnt signaling, however, the way these circuits coordinately regulate this signaling is still unclear. Moreover, the mechanisms responsible for the appearance of hybrid phenotypes (cells presenting both E and M features) are not well determined. The hybrid phenotype can present much higher metastatic potential than the mesenchymal phenotype. In this study, we propose a Boolean model of the Wnt pathway signaling contemplating recent published biochemical information on hepatocarcinoma. The model presents good coherence with experimental data for perturbed and wild-type cases. With the model, we propose two new molecular circuits involving several molecules that can stabilize hybrid states during the EMT. Moreover, we found that the two well studied circuits, AKT1/ß-catenin and SNAIL1/miR-34, can cooperate with the predicted ones to favor the stabilization of the hybrid states. These findings highlight some possible unrecognized mechanisms during Wnt signaling and may provide alternative therapeutic strategies to control cancer metastatization.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Phenotype , Wnt Signaling Pathway/genetics , beta Catenin/genetics
8.
Cancers (Basel) ; 13(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924679

ABSTRACT

Ewing Sarcoma (ES) is a rare malignant tumor occurring most frequently in adolescents and young adults. The ES hallmark is a chromosomal translocation between the chromosomes 11 and 22 that results in an aberrant transcription factor (TF) through the fusion of genes from the FET and ETS families, commonly EWSR1 and FLI1. The regulatory mechanisms behind the ES transcriptional alterations remain poorly understood. Here, we reconstruct the ES regulatory network using public available transcriptional data. Seven TFs were identified as potential MRs and clustered into two groups: one composed by PAX7 and RUNX3, and another composed by ARNT2, CREB3L1, GLI3, MEF2C, and PBX3. The MRs within each cluster act as reciprocal agonists regarding the regulation of shared genes, regulon activity, and implications in clinical outcome, while the clusters counteract each other. The regulons of all the seven MRs were differentially methylated. PAX7 and RUNX3 regulon activity were associated with good prognosis while ARNT2, CREB3L1, GLI3, and PBX3 were associated with bad prognosis. PAX7 and RUNX3 appear as highly expressed in ES biopsies and ES cell lines. This work contributes to the understanding of the ES regulome, identifying candidate MRs, analyzing their methilome and pointing to potential prognostic factors.

9.
Bioinformatics ; 25(11): 1468-9, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19369498

ABSTRACT

UNLABELLED: ViaComplex is an open-source application that builds landscape maps of gene expression networks. The motivation for this software comes from two previous publications (Nucleic Acids Res., 35, 1859-1867, 2007; Nucleic Acids Res., 36, 6269-6283, 2008). The first article presents a network-based model of genome stability pathways where we defined a set of genes that characterizes each genetic system. In the second article we analyzed this model by projecting functional information from several experiments onto the gene network topology. In order to systematize the methods developed in these articles, ViaComplex provides tools that may help potential users to assess different high-throughput experiments in the context of six core genome maintenance mechanisms. This model illustrates how different gene networks can be analyzed by the same algorithm. AVAILABILITY: (http://lief.if.ufrgs.br/pub/biosoftwares/viacomplex).


Subject(s)
Gene Expression Profiling/methods , Gene Expression , Gene Regulatory Networks/genetics , Genome/genetics , Software , User-Computer Interface
10.
BMC Plant Biol ; 8: 50, 2008 Apr 30.
Article in English | MEDLINE | ID: mdl-18447914

ABSTRACT

BACKGROUND: NEP1-like proteins (NLPs) are a novel family of microbial elicitors of plant necrosis. Some NLPs induce a hypersensitive-like response in dicot plants though the basis for this response remains unclear. In addition, the spatial structure and the role of these highly conserved proteins are not known. RESULTS: We predict a 3d-structure for the beta-rich section of the NLPs based on alignments, prediction tools and molecular dynamics. We calculated a consensus sequence from 42 NLPs proteins, predicted its secondary structure and obtained a high quality alignment of this structure and conserved residues with the two Cupin superfamily motifs. The conserved sequence GHRHDWE and several common residues, especially some conserved histidines, in NLPs match closely the two cupin motifs. Besides other common residues shared by dicot Auxin-Binding Proteins (ABPs) and NLPs, an additional conserved histidine found in all dicot ABPs was also found in all NLPs at the same position. CONCLUSION: We propose that the necrosis inducing protein class belongs to the Cupin superfamily. Based on the 3d-structure, we are proposing some possible functions for the NLPs.


Subject(s)
Plant Proteins/chemistry , Amino Acid Motifs , Amino Acid Sequence , Confidence Intervals , Consensus Sequence , Cysteine/chemistry , Glycosylation , Models, Molecular , Molecular Sequence Data , Molecular Structure , Protein Structure, Secondary , Sequence Alignment , Sequence Analysis, Protein
11.
Mol Clin Oncol ; 8(6): 719-724, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29844902

ABSTRACT

Ewing Sarcoma (ES) is a highly aggressive bone and soft tissue childhood cancer. The development of resistance to chemotherapy is common and remains the main cause of treatment failure. We herein evaluated the expression of genes associated with chemotherapy resistance in ES cell lines. A set of genes (CCAR1, TUBA1A, POLDIP2, SMARCA4 and SMARCB1) was data-mined for resistance against doxorubicin and vincristine, which are the standard drugs used in the treatment of patients with ES. The expression of each gene in SK-ES-1 ES cells was reported before and after exposure to a drug resistance-inducing protocol. There was a significant downregulation of CCAR1 and TUBA1A in doxorubicin-resistant cells, with low expression of TUBA1A in vincristine-resistant cells. By contrast, POLDIP2 was significantly upregulated in cells resistant to either drug, and the expression of the SMARCB1 and SMARCA4 genes was upregulated in doxorubicin-resistant cells. These findings indicate that resistance to specific chemotherapeutic agents was accompanied by differential changes in gene expression in ES tumors.

12.
Environ Mol Mutagen ; 48(1): 67-70, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17177210

ABSTRACT

Vanillin (VA) modulates the genotoxicity of chemical and physical agents in a complex manner. Previous studies indicate that VA inhibits the mutagenicity but increases the mitotic homologous recombination caused by at least some genotoxic agents. In the present study, we have evaluated the effects of VA on the repair of lethal damage produced by three genotoxins, N-ethyl-N-nitrosourea (ENU), ethyl methanesulfonate (EMS), and mitomycin C (MMC), using the DNA repair test (DRT) in Drosophila melanogaster. VA, 0.25% and 0.5% (w/v), increased the toxicity of MMC and EMS in repair-deficient flies, as measured by a decrease in the proportion of male to female progeny in the DRT; sex ratios decreased from 18-48% for MMC and 21-97% for EMS. These effects may be caused by the inhibition of nonhomologous DNA end joining caused by VA. In contrast to the results with MMC and EMS, VA protected against the lethality of ENU in repair-defective flies, as measured by a 43-207% increase in the survival of male flies in the DRT. It was inferred that the protective effect was due to VA modulating stages prior to the induction of ENU lesions in DNA, including modulating the antioxidant properties of VA and/or to its interference with the metabolic activation and/or detoxification of specific genotoxins. The results from this study indicate that the characterization of VA as a promising agent for preventing damage to genes and chromosomes should be tempered by observations that VA can increase the toxicity of chemical agents.


Subject(s)
Benzaldehydes/pharmacology , DNA Repair/drug effects , Drosophila melanogaster/drug effects , Mutagens/toxicity , Animals , Antimutagenic Agents/pharmacology , DNA Damage/drug effects , Dose-Response Relationship, Drug , Drosophila melanogaster/genetics , Ethyl Methanesulfonate/toxicity , Ethylnitrosourea/toxicity , Female , Male , Mitomycin/toxicity , Recombination, Genetic/drug effects
13.
PLoS One ; 12(6): e0178643, 2017.
Article in English | MEDLINE | ID: mdl-28575027

ABSTRACT

The amino acid sequence of DNMT2 is very similar to the catalytic domains of bacterial and eukaryotic proteins. However, there is great variability in the region of recognition of the target sequence. While bacterial DNMT2 acts as a DNA methyltransferase, previous studies have indicated low DNA methylation activity in eukaryotic DNMT2, with preference by tRNA methylation. Drosophilids are known as DNMT2-only species and the DNA methylation phenomenon is a not elucidated case yet, as well as the ontogenetic and physiologic importance of DNMT2 for this species group. In addition, more recently study showed that methylation in the genome in Drosophila melanogaster is independent in relation to DNMT2. Despite these findings, Drosophilidae family has more than 4,200 species with great ecological diversity and historical evolution, thus we, therefore, aimed to examine the drosophilids DNMT2 in order to verify its conservation at the physicochemical and structural levels in a functional context. We examined the twenty-six DNMT2 models generated by molecular modelling and five crystallographic structures deposited in the Protein Data Bank (PDB) using different approaches. Our results showed that despite sequence and structural similarity between species close related, we found outstanding differences when they are analyzed in the context of surface distribution of electrostatic properties. The differences found in the electrostatic potentials may be linked with different affinities and processivity of DNMT2 for its different substrates (DNA, RNA or tRNA) and even for interactions with other proteins involved in the epigenetic mechanisms.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/chemistry , Drosophila Proteins/chemistry , Epigenesis, Genetic , Protein Conformation , Static Electricity , Amino Acid Sequence , Animals , DNA (Cytosine-5-)-Methyltransferases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster , Kinetics , Models, Molecular , Phylogeny
14.
Front Immunol ; 8: 1210, 2017.
Article in English | MEDLINE | ID: mdl-29046675

ABSTRACT

Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient's own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide-ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide-MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC "hot-spots" for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made.

15.
Leuk Res ; 54: 59-65, 2017 03.
Article in English | MEDLINE | ID: mdl-28109975

ABSTRACT

Predicting the individual response to chemotherapy is a crucial challenge in cancer treatment. DNA damage caused by antitumor therapies evokes different repair mechanisms responses, such as Nucleotide Excision Repair (NER), whose components are being studied as prognosis biomarkers and target therapies. However, few reports have addressed DNA damages in pediatric Acute Lymphoid Leukemia (ALL). Hence, we conducted an observational follow-up study with pediatric patients to assess DNA damage (by Comet Assay) and gene expression from NER pathway during chemotherapy induction. Bone marrow samples from diagnosis, 15th(D15) and 35th (D35) days of the treatment were collected from 28 patients with ALL. There was no increase in damage index. However, there was a reduction of cells with low damages on D35 compared with diagnosis. NER pathway expression remained the same, however, in a single patient, a significant decrease was observed, maybe due to silencing or downregulation of repair pathways. DNA damage levels and repair may influence the clinical outcome, being involved in drug resistance and risk of relapse. In pediatric ALL, we analyzed for the first time DNA damage and repair behavior in BM samples. Monitoring patient's outcomes will help to access the implication of our findings in survival and relapse rates.


Subject(s)
DNA Damage/drug effects , Induction Chemotherapy/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Bone Marrow/pathology , Child , Comet Assay , DNA Repair , Female , Follow-Up Studies , Humans , Infant , Male , Prognosis , Time Factors
16.
Mutat Res ; 607(2): 225-30, 2006 Sep 05.
Article in English | MEDLINE | ID: mdl-16777474

ABSTRACT

Vanillin (VA), the world's major flavoring compound used in food industry and confectionery products - that has antimutagenic and anticarcinogenic activity against a variety of mutagenic/carcinogenic agents - was tested for the interval between the formation of premutational lesion and it is finalization as a DNA lesion. The overall findings using co-treatment protocols in SMART test suggest that VA can lead to a significant protection against the general genotoxicity of ethylmethanesulphonate (EMS), N-ethyl-N-nitrosourea (ENU), N-methyl-N-nitrosourea (MNU) and bleomycin sulphate (BLEO). Considering MNU, ENU and EMS the desmutagenic activity observed could result from VA-stimulation of detoxification, via induction of glutathione S-transferase. However, the protector effect related to BLEO could be attributed to its powerful scavenger ability, which has the potential to prevent oxidative damage induced by BLEO.


Subject(s)
Alkylating Agents/toxicity , Antimutagenic Agents/toxicity , Benzaldehydes/pharmacology , Mutation/drug effects , Recombination, Genetic , Animals , Bleomycin/toxicity , Chromosomes , Crosses, Genetic , Dose-Response Relationship, Drug , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Ethyl Methanesulfonate/toxicity , Ethylnitrosourea/toxicity , Female , Genetic Markers , Male , Methylnitrosourea/toxicity , Mutagenicity Tests
17.
Environ Pollut ; 139(3): 469-76, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16112782

ABSTRACT

Mutagenic and recombinagenic activity of surface waters in the Guaíba Hydrographic Region (RS, Brazil) was investigated using the SMART in Drosophila melanogaster. Two positive results in Caí River (September 2000 and August 2001) and in Taquari River (August 2001 and February 2002)--linked to direct recombinagenic toxicants were observed. In Jacuí samples, an indirect mutagenic and recombinagenic action was detected in a September 2000 collection and a direct recombinational activity was observed in February 2002. Also in February 2002--samples from Dilúvio Brook and Guaíba Lake (GPC) were able to induce wing spots by mitotic recombinagenesis. The former sampling site showed toxicants to have a direct action, and the latter an increment in mitotic recombination that depended on metabolic action. The SMART wing test shows that all positive responses were mainly related to homologous mitotic recombination.


Subject(s)
Drosophila melanogaster/drug effects , Mutagens/toxicity , Sewage , Water Pollutants, Chemical/toxicity , Agriculture , Animals , Brazil , Chemical Phenomena , Chemistry, Physical , Cities , Drosophila melanogaster/genetics , Hydrogen-Ion Concentration , Industrial Waste/adverse effects , Mutagenicity Tests/methods , Recombination, Genetic/drug effects , Temperature , Wings, Animal/drug effects
18.
Genet Mol Res ; 5(1): 182-92, 2006 Mar 31.
Article in English | MEDLINE | ID: mdl-16755509

ABSTRACT

The description of the complex molecular network responsible for cell behavior requires new tools to integrate large quantities of experimental data in the design of biological information systems. These tools could be used in the characterization of these networks and in the formulation of relevant biological hypotheses. The building of an ontology is a crucial step because it integrates in a coherent framework the concepts necessary to accomplish such a task. We present MONET (molecular network), an extensible ontology and an architecture designed to facilitate the integration of data originating from different public databases in a single- and well-documented relational database, that is compatible with MONET formal definition. We also present an example of an application that can easily be implemented using these tools.


Subject(s)
Computational Biology/methods , Computer Communication Networks , Databases, Genetic , Molecular Biology , Systems Integration
19.
Mutat Res ; 582(1-2): 87-94, 2005 Apr 04.
Article in English | MEDLINE | ID: mdl-15781214

ABSTRACT

In the present study, the phenolic compounds eugenol, isoeugenol and safrole were investigated for genotoxicity in the wing spot test of Drosophila melanogaster. The Drosophila wing somatic mutation and recombination test (SMART) provides a rapid means to evaluate agents able to induce gene mutations and chromosome aberrations, as well as rearrangements related to mitotic recombination. We applied the SMART in its standard version with normal bioactivation and in its variant with increased cytochrome P450-dependent biotransformation capacity. Eugenol and safrole produced a positive recombinagenic response only in the improved assay, which was related to a high CYP450-dependent activation capacity. This suggests, as previously reported, the involvement of this family of enzymes in the activation of eugenol and safrole rather than in its detoxification. On the contrary, isoeugenol was clearly non-genotoxic at the same millimolar concentrations as used for eugenol in both the crosses. The responsiveness of SMART assays to recombinagenic compounds, as well as the reactive metabolites from eugenol and safrole were considered responsible for the genotoxicity observed.


Subject(s)
Eugenol/analogs & derivatives , Eugenol/toxicity , Mutagens/toxicity , Safrole/toxicity , Wings, Animal/drug effects , Animals , Drosophila melanogaster , Female , Male
20.
Mol Immunol ; 67(2 Pt B): 303-10, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26141239

ABSTRACT

Cytotoxic T-lymphocytes (CTLs) are the key players of adaptive cellular immunity, being able to identify and eliminate infected cells through the interaction with peptide-loaded major histocompatibility complexes class I (pMHC-I). Despite the high specificity of this interaction, a given lymphocyte is actually able to recognize more than just one pMHC-I complex, a phenomenon referred as cross-reactivity. In the present work we describe the use of pMHC-I structural features as input for multivariate statistical methods, to perform standardized structure-based predictions of cross-reactivity among viral epitopes. Our improved approach was able to successfully identify cross-reactive targets among 28 naturally occurring hepatitis C virus (HCV) variants and among eight epitopes from the four dengue virus serotypes. In both cases, our results were supported by multiscale bootstrap resampling and by data from previously published in vitro experiments. The combined use of data from charges and accessible surface area (ASA) of selected residues over the pMHC-I surface provided a powerful way of assessing the structural features involved in triggering cross-reactive responses. Moreover, the use of an R package (pvclust) for assessing the uncertainty in the hierarchical cluster analysis provided a statistical support for the interpretation of results. Taken together, these methods can be applied to vaccine design, both for the selection of candidates capable of inducing immunity against different targets, or to identify epitopes that could trigger undesired immunological responses.


Subject(s)
Cross Reactions/immunology , T-Lymphocytes, Cytotoxic/immunology , Cluster Analysis , Conserved Sequence , Crystallography, X-Ray , Dengue Vaccines/immunology , Dengue Virus/classification , Dengue Virus/immunology , Histocompatibility Antigens Class I/immunology , Humans , Models, Molecular , Peptides/immunology , Receptors, Antigen, T-Cell/metabolism , Reproducibility of Results , Serotyping , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL