Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLoS Pathog ; 19(5): e1011357, 2023 05.
Article in English | MEDLINE | ID: mdl-37146066

ABSTRACT

Synonymous recoding of RNA virus genomes is a promising approach for generating attenuated viruses to use as vaccines. Problematically, recoding typically hinders virus growth, but this may be rectified using CpG dinucleotide enrichment. CpGs are recognised by cellular zinc-finger antiviral protein (ZAP), and so in principle, removing ZAP sensing from a virus propagation system will reverse attenuation of a CpG-enriched virus, enabling high titre yield of a vaccine virus. We tested this using a vaccine strain of influenza A virus (IAV) engineered for increased CpG content in genome segment 1. Virus attenuation was mediated by the short isoform of ZAP, correlated with the number of CpGs added, and was enacted via turnover of viral transcripts. The CpG-enriched virus was strongly attenuated in mice, yet conveyed protection from a potentially lethal challenge dose of wildtype virus. Importantly for vaccine development, CpG-enriched viruses were genetically stable during serial passage. Unexpectedly, in both MDCK cells and embryonated hens' eggs that are used to propagate live attenuated influenza vaccines, the ZAP-sensitive virus was fully replication competent. Thus, ZAP-sensitive CpG enriched viruses that are defective in human systems can yield high titre in vaccine propagation systems, providing a realistic, economically viable platform to augment existing live attenuated vaccines.


Subject(s)
Influenza A virus , Influenza Vaccines , Viral Vaccines , Animals , Female , Humans , Mice , Influenza A virus/genetics , Vaccines, Attenuated , Chickens , Viral Vaccines/genetics , Vaccine Development , Virus Replication
2.
Vet Res ; 55(1): 70, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822378

ABSTRACT

Adaptation of avian pathogenic E. coli (APEC) to changing host environments including virulence factors expression is vital for disease progression. FdeC is an autotransporter adhesin that plays a role in uropathogenic Escherichia coli (UPEC) adhesion to epithelial cells. Expression of fdeC is known to be regulated by environmental conditions in UPEC and Shiga toxin-producing E. coli (STEC). The observation in a previous study that an APEC strain IMT5155 in which the fdeC gene was disrupted by a transposon insertion resulted in elevated adhesion to chicken intestinal cells prompted us to further explore the role of fdeC in infection. We found that the fdeC gene prevalence and FdeC variant prevalence differed between APEC and nonpathogenic E. coli genomes. Expression of the fdeC gene was induced at host body temperature, an infection relevant condition. Disruption of fdeC resulted in greater adhesion to CHIC-8E11 cells and increased motility at 42 °C compared to wild type (WT) and higher expression of multiple transporter proteins that increased inorganic ion export. Increased motility may be related to increased inorganic ion export since this resulted in downregulation of YbjN, a protein known to supress motility. Inactivation of fdeC in APEC strain IMT5155 resulted in a weaker immune response in chickens compared to WT in experimental infections. Our findings suggest that FdeC is upregulated in the host and contributes to interactions with the host by down-modulating motility during colonization. A thorough understanding of the regulation and function of FdeC could provide novel insights into E. coli pathogenesis.


Subject(s)
Adhesins, Escherichia coli , Bacterial Adhesion , Chickens , Escherichia coli Infections , Poultry Diseases , Poultry Diseases/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Animals , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Escherichia coli/physiology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
3.
Viruses ; 15(11)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38005955

ABSTRACT

The avian coronavirus, infectious bronchitis virus (IBV), is an economically important infectious disease affecting chickens, with a diverse range of serotypes found globally. The major surface protein, spike (S), has high diversity between serotypes, and amino acid differences in the S1 sub-unit are thought to be responsible for poor cross-protection afforded by vaccination. Here, we attempt to address this, by using epitope mapping technology to identify shared and serotype-specific immunogenic epitopes of the S glycoprotein of three major circulating strains of IBV, M41, QX, and 4/91, via CLIPS peptide arrays based on peptides from the S1 sub-units. The arrays were screened with sera from chickens immunised with recombinant IBV, based on Beau-R backbone expressing heterologous S, generated in two independent vaccination/challenge trials. The screening of sera from rIBV vaccination experiments led to the identification of 52 immunogenic epitopes on the S1 of M41, QX, and 4/91. The epitopes were assigned into six overlapping epitope binding regions. Based on accessibility and location in the hypervariable regions of S, three sequences, 25YVYYYQSAFRPPNGWHLQGGAYAVVNSTN54, 67TVGVIKDVYNQSVASI82, and 83AMTVPPAGMSWSVS96, were selected for further investigation, and synthetic peptide mimics were recognised by polyclonal sera. These epitopes may have the potential to contribute towards a broader cross-protective IBV vaccine.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Epitopes , Epitope Mapping , Chickens , Peptides , Glycoproteins , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Spike Glycoprotein, Coronavirus
4.
Viruses ; 15(3)2023 02 21.
Article in English | MEDLINE | ID: mdl-36992300

ABSTRACT

Evidence suggests that susceptibility to avian influenza A virus in chickens is influenced by host genetics, but the mechanisms are poorly understood. A previous study demonstrated that inbred line 0 chickens are more resistant to low-pathogenicity avian influenza (LPAI) infection than line CB.12 birds based on viral shedding, but the resistance was not associated with higher AIV-specific IFNγ responses or antibody titres. In this study, we investigated the proportions and cytotoxic capacity of T-cell subpopulations in the spleen and the early immune responses in the respiratory tract, analysing the innate immune transcriptome of lung-derived macrophages following in vitro stimulation with LPAI H7N1 or the TLR7 agonist R848. The more susceptible C.B12 line had a higher proportion of CD8αß+ γδ and CD4+CD8αα+ αVß1 T cells, and a significantly higher proportion of the CD8αß+ γδ and CD8αß+ αVß1 T cells expressed CD107a, a surrogate marker of degranulation. Lung macrophages isolated from line C.B12 birds expressed higher levels of the negative regulator genes TRIM29 and IL17REL, whereas macrophages from line 0 birds expressed higher levels of antiviral genes including IRF10 and IRG1. After stimulation with R848, the macrophages from line 0 birds mounted a higher response compared to line C.B12 cells. Together, the higher proportion of unconventional T cells, the higher level of cytotoxic cell degranulation ex vivo and post-stimulation and the lower levels of antiviral gene expression suggest a potential role of immunopathology in mediating susceptibility in C.B12 birds.


Subject(s)
Influenza A Virus, H7N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Chickens , Antiviral Agents
5.
Front Microbiol ; 14: 1258796, 2023.
Article in English | MEDLINE | ID: mdl-37854334

ABSTRACT

Salmonella enterica serovar Typhimurium (STm) is a major foodborne pathogen and poultry are a key reservoir of human infections. To understand the host responses to early stages of Salmonella infection in poultry, we infected 2D and 3D enteroids, the latter of which contains leukocytes, neurons, and mesenchymal cells that are characteristic of the lamina propria. We infected these enteroids with wild-type (WT STm), a non-invasive mutant lacking the prgH gene (ΔprgH STm), or treated them with STm lipopolysaccharide (LPS) and analyzed the expression of innate immune related genes by qPCR at 4 and 8 h. The localization of the tight junction protein, ZO-1, expression was disrupted in WT STm infected enteroids but not ΔprgH STm or LPS treated enteroids, suggesting a loss of epithelial barrier integrity. The innate immune response to LPS was more pronounced in 2D enteroids compared to 3D enteroids and by 8 hpi, the response in 3D enteroids was almost negligible. However, when STm adhered to or invaded the enteroids, both 2D and 3D enteroids exhibited an upregulation of inflammatory responses. The presence of lamina propria cells in 3D enteroids resulted in the unique expression of genes associated with immune functions involved in regulating inflammation. Moreover, 2D and 3D enteroids showed temporal differences in response to bacterial invasion or adherence. At 8 hpi, innate responses in 3D but not 2D enteroids continued to increase after infection with WT STm, whereas the responses to the non-invasive strain decreased at 8 hpi in both 2D and 3D enteroids. In conclusion, STm infection of chicken enteroids recapitulated several observations from in vivo studies of Salmonella-infected chickens, including altered epithelial barrier integrity based on ZO-1 expression and inflammatory responses. Our findings provide evidence that Salmonella-infected enteroids serve as effective models for investigating host-pathogen interactions and exploring the molecular mechanisms of microbial virulence although the 3D model mimics the host more accurately due to the presence of a lamina propria.

6.
Front Immunol ; 13: 1064084, 2022.
Article in English | MEDLINE | ID: mdl-36618373

ABSTRACT

Chicken bone marrow-derived macrophages (BMMΦ) and dendritic cells (BMDC) are utilized as models to study the mononuclear phagocytic system (MPS). A widely used method to generate macrophages and DC in vitro is to culture bone marrow cells in the presence of colony-stimulating factor-1 (CSF1) to differentiate BMMΦ and granulocyte-macrophage-CSF (GM-CSF, CSF2) and interleukin-4 (IL-4) to differentiate BMDC, while CSF2 alone can lead to the development of granulocyte-macrophage-CSF-derived DC (GMDC). However, in chickens, the MPS cell lineages and their functions represented by these cultures are poorly understood. Here, we decipher the phenotypical, functional and transcriptional differences between chicken BMMΦ and BMDC along with examining differences in DC cultures grown in the absence of IL-4 on days 2, 4, 6 and 8 of culture. BMMΦ cultures develop into a morphologically homogenous cell population in contrast to the BMDC and GMDC cultures, which produce morphologically heterogeneous cell cultures. At a phenotypical level, all cultures contained similar cell percentages and expression levels of MHCII, CD11c and CSF1R-transgene, whilst MRC1L-B expression decreased over time in BMMΦ. All cultures were efficiently able to uptake 0.5 µm beads, but poorly phagocytosed 1 µm beads. Little difference was observed in the kinetics of phagosomal acidification across the cultures on each day of analysis. Temporal transcriptomic analysis indicated that all cultures expressed high levels of CSF3R, MERTK, SEPP1, SPI1 and TLR4, genes associated with macrophages in mammals. In contrast, low levels of FLT3, XCR1 and CAMD1, genes associated with DC, were expressed at day 2 in BMDC and GMDC after which expression levels decreased. Collectively, chicken CSF2 + IL-4- and CSF2-dependent BM cultures represent cells of the macrophage lineage rather than inducing conventional DC.


Subject(s)
Chickens , Interleukin-4 , Animals , Chickens/metabolism , Interleukin-4/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Bone Marrow/metabolism , Dendritic Cells/metabolism , Macrophages/metabolism , Mammals/metabolism
7.
Vaccines (Basel) ; 8(2)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580371

ABSTRACT

Gammacoronavirus infectious bronchitis virus (IBV) causes an economically important respiratory disease of poultry. Protective immunity is associated with the major structural protein, spike (S) glycoprotein, which induces neutralising antibodies and defines the serotype. Cross-protective immunity between serotypes is limited and can be difficult to predict. In this study, the ability of two recombinant IBV vaccine candidates, BeauR-M41(S) and BeauR-4/91(S), to induce cross-protection against a third serotype, QX, was assessed. Both rIBVs are genetically based on the Beaudette genome with only the S gene derived from either M41 or 4/91, two unrelated serotypes. The use of these rIBVs allowed for the assessment of the potential of M41 and 4/91 S glycoproteins to induce cross-protective immunity against a heterologous QX challenge. The impact of the order of vaccination was also assessed. Homologous primary and secondary vaccination with BeauR-M41(S) or BeauR-4/91(S) resulted in a significant reduction of infectious QX load in the trachea at four days post-challenge, whereas heterologous primary and secondary vaccination with BeauR-M41(S) and BeauR-4/91(S) reduced viral RNA load in the conjunctiva-associated lymphoid tissue (CALT). Both homologous and heterologous vaccination regimes reduced clinical signs and birds recovered more rapidly as compared with an unvaccinated/challenge control group. Despite both rIBV BeauR-M41(S) and BeauR-4/91(S) displaying limited replication in vivo, serum titres in these vaccinated groups were higher as compared with the unvaccinated/challenge control group. This suggests that vaccination with rIBV primed the birds for a boosted humoral response to heterologous QX challenge. Collectively, vaccination with the rIBV elicited limited protection against challenge, with failure to protect against tracheal ciliostasis, clinical manifestations, and viral replication. The use of a less attenuated recombinant vector that replicates throughout the respiratory tract could be required to elicit a stronger and prolonged protective immune response.

SELECTION OF CITATIONS
SEARCH DETAIL