Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 23(8): 1246-1255, 2022 08.
Article in English | MEDLINE | ID: mdl-35817845

ABSTRACT

Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.


Subject(s)
Lymph Nodes , Stromal Cells , Animals , Fibroblasts , Lymphocytes , Mice , Mice, Inbred C57BL
2.
Cell ; 179(1): 51-53, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31539498

ABSTRACT

In this issue of Cell, Zhu et al. show that in the developing zebrafish, neural crest cells can act as professional phagocytes and directionally approach apoptotic cells to clear the larval nervous system from cell debris.


Subject(s)
Neural Crest , Zebrafish Proteins , Animals , Nervous System , Phagocytosis , Zebrafish
3.
Cell ; 171(1): 188-200.e16, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28867286

ABSTRACT

Actin filaments polymerizing against membranes power endocytosis, vesicular traffic, and cell motility. In vitro reconstitution studies suggest that the structure and the dynamics of actin networks respond to mechanical forces. We demonstrate that lamellipodial actin of migrating cells responds to mechanical load when membrane tension is modulated. In a steady state, migrating cell filaments assume the canonical dendritic geometry, defined by Arp2/3-generated 70° branch points. Increased tension triggers a dense network with a broadened range of angles, whereas decreased tension causes a shift to a sparse configuration dominated by filaments growing perpendicularly to the plasma membrane. We show that these responses emerge from the geometry of branched actin: when load per filament decreases, elongation speed increases and perpendicular filaments gradually outcompete others because they polymerize the shortest distance to the membrane, where they are protected from capping. This network-intrinsic geometrical adaptation mechanism tunes protrusive force in response to mechanical load.


Subject(s)
Actin Cytoskeleton/chemistry , Actin Cytoskeleton/ultrastructure , Keratinocytes/ultrastructure , Pseudopodia/chemistry , Pseudopodia/ultrastructure , Animals , Cell Membrane/chemistry , Keratinocytes/chemistry , Microscopy, Electron , Zebrafish
4.
Cell ; 171(6): 1368-1382.e23, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29195076

ABSTRACT

Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection.


Subject(s)
Bacterial Infections/immunology , Blood Platelets/immunology , Animals , Bacteria/classification , Blood Platelets/cytology , Blood Vessels/injuries , Blood Vessels/pathology , Calcium/metabolism , Cell Movement , Cell Polarity , Humans , Inflammation/immunology , Integrins/metabolism , Mice , Myosins/metabolism , Neutrophils/cytology
5.
6.
Nat Rev Mol Cell Biol ; 20(12): 738-752, 2019 12.
Article in English | MEDLINE | ID: mdl-31582855

ABSTRACT

Cell migration is essential for physiological processes as diverse as development, immune defence and wound healing. It is also a hallmark of cancer malignancy. Thousands of publications have elucidated detailed molecular and biophysical mechanisms of cultured cells migrating on flat, 2D substrates of glass and plastic. However, much less is known about how cells successfully navigate the complex 3D environments of living tissues. In these more complex, native environments, cells use multiple modes of migration, including mesenchymal, amoeboid, lobopodial and collective, and these are governed by the local extracellular microenvironment, specific modalities of Rho GTPase signalling and non-muscle myosin contractility. Migration through 3D environments is challenging because it requires the cell to squeeze through complex or dense extracellular structures. Doing so requires specific cellular adaptations to mechanical features of the extracellular matrix (ECM) or its remodelling. In addition, besides navigating through diverse ECM environments and overcoming extracellular barriers, cells often interact with neighbouring cells and tissues through physical and signalling interactions. Accordingly, cells need to call on an impressively wide diversity of mechanisms to meet these challenges. This Review examines how cells use both classical and novel mechanisms of locomotion as they traverse challenging 3D matrices and cellular environments. It focuses on principles rather than details of migratory mechanisms and draws comparisons between 1D, 2D and 3D migration.


Subject(s)
Cell Adhesion/physiology , Cell Movement/physiology , Extracellular Matrix/physiology , Signal Transduction/physiology , Animals , Humans
7.
Cell ; 167(6): 1448-1449, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27912053

ABSTRACT

In this issue of Cell, Skau et al. show that the formin FMN2 organizes a perinuclear actin cytoskeleton that protects the nucleus and its genomic content of migrating cells squeezing through small spaces.


Subject(s)
Actin Cytoskeleton , Microfilament Proteins/genetics , Actins/genetics , Cell Nucleus , Humans
8.
Nat Immunol ; 19(6): 606-616, 2018 06.
Article in English | MEDLINE | ID: mdl-29777221

ABSTRACT

Although much is known about the physiological framework of T cell motility, and numerous rate-limiting molecules have been identified through loss-of-function approaches, an integrated functional concept of T cell motility is lacking. Here, we used in vivo precision morphometry together with analysis of cytoskeletal dynamics in vitro to deconstruct the basic mechanisms of T cell migration within lymphatic organs. We show that the contributions of the integrin LFA-1 and the chemokine receptor CCR7 are complementary rather than positioned in a linear pathway, as they are during leukocyte extravasation from the blood vasculature. Our data demonstrate that CCR7 controls cortical actin flows, whereas integrins mediate substrate friction that is sufficient to drive locomotion in the absence of considerable surface adhesions and plasma membrane flux.


Subject(s)
Actins/immunology , Chemotaxis, Leukocyte/immunology , Lymphocyte Function-Associated Antigen-1/immunology , Receptors, CCR7/immunology , T-Lymphocytes/immunology , Actins/metabolism , Animals , Chemokines/immunology , Chemokines/metabolism , Friction , Integrins/immunology , Integrins/metabolism , Lymph Nodes , Lymphocyte Function-Associated Antigen-1/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR7/metabolism , T-Lymphocytes/metabolism
9.
Cell ; 160(4): 673-685, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25679761

ABSTRACT

3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype.


Subject(s)
Cell Movement , Embryo, Nonmammalian/cytology , Gastrula/cytology , Stem Cells/cytology , Zebrafish/embryology , Animals , Cell Adhesion , Cell Polarity
10.
Cell ; 161(2): 374-86, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25799384

ABSTRACT

Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns.


Subject(s)
Actins/metabolism , Cell Movement , Models, Biological , Animals , Cell Line , Cell Polarity , Cells, Cultured , Cytoskeleton/metabolism , Humans , Mice, Inbred C57BL , Oryzias
11.
Annu Rev Cell Dev Biol ; 32: 469-490, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27501447

ABSTRACT

Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.


Subject(s)
Cell Movement , Focal Adhesions/metabolism , Animals , Biomechanical Phenomena , Humans , Models, Biological
12.
Immunity ; 52(5): 721-723, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32433942

ABSTRACT

In contrast to lymph nodes, the lymphoid regions of the spleen-the white pulp-are located deep within the organ, yielding the trafficking paths of T cells in the white pulp largely invisible. In an intravital microscopy tour de force reported in this issue of Immunity, Chauveau et al. show that T cells perform unidirectional, perivascular migration through the enigmatic marginal zone bridging channels.


Subject(s)
Spleen , T-Lymphocytes , Cell Movement , Immunity , Lymph Nodes
13.
Nat Immunol ; 17(12): 1352-1360, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27776107

ABSTRACT

RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes.


Subject(s)
Actins/metabolism , B-Lymphocytes/immunology , Cytoskeleton/metabolism , DNA-Binding Proteins/genetics , Guanine Nucleotide Exchange Factors/genetics , Immunologic Deficiency Syndromes/genetics , Killer Cells, Natural/immunology , T-Lymphocytes/immunology , Adolescent , Angiogenesis Inhibitors/pharmacology , B-Lymphocytes/drug effects , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/genetics , Child , Cytotoxicity, Immunologic/genetics , DNA Mutational Analysis , Dyneins/metabolism , Female , HEK293 Cells , Humans , Immunoglobulin Class Switching/genetics , Immunologic Deficiency Syndromes/drug therapy , Jurkat Cells , Killer Cells, Natural/drug effects , Lenalidomide , Male , Mutation/genetics , Pedigree , RNA, Small Interfering/genetics , T-Lymphocytes/drug effects , Thalidomide/analogs & derivatives , Thalidomide/pharmacology
14.
Nat Immunol ; 17(12): 1361-1372, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27798618

ABSTRACT

Hemolysis drives susceptibility to bacterial infections and predicts poor outcome from sepsis. These detrimental effects are commonly considered to be a consequence of heme-iron serving as a nutrient for bacteria. We employed a Gram-negative sepsis model and found that elevated heme levels impaired the control of bacterial proliferation independently of heme-iron acquisition by pathogens. Heme strongly inhibited phagocytosis and the migration of human and mouse phagocytes by disrupting actin cytoskeletal dynamics via activation of the GTP-binding Rho family protein Cdc42 by the guanine nucleotide exchange factor DOCK8. A chemical screening approach revealed that quinine effectively prevented heme effects on the cytoskeleton, restored phagocytosis and improved survival in sepsis. These mechanistic insights provide potential therapeutic targets for patients with sepsis or hemolytic disorders.


Subject(s)
Gram-Negative Bacterial Infections/immunology , Guanine Nucleotide Exchange Factors/metabolism , Heme/metabolism , Hemolysis/immunology , Macrophages/immunology , Phagocytosis , Sepsis/immunology , Animals , Anti-Bacterial Agents/therapeutic use , Cytoskeleton/metabolism , Female , Gram-Negative Bacterial Infections/drug therapy , Guanine Nucleotide Exchange Factors/genetics , Heme Oxygenase-1/genetics , Hemolysis/drug effects , Humans , Immune Evasion , Macrophages/drug effects , Macrophages/microbiology , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis/drug effects , Quinine/therapeutic use , RAW 264.7 Cells , Sepsis/drug therapy , cdc42 GTP-Binding Protein/metabolism
15.
Immunity ; 46(4): 519-520, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28423329

ABSTRACT

Immune cells communicate using cytokine signals, but the quantitative rules of this communication aren't clear. In this issue of Immunity, Oyler-Yaniv et al. (2017) suggest that the distribution of a cytokine within a lymphatic organ is primarily governed by the local density of cells consuming it.


Subject(s)
Cytokines , Immunity, Humoral , Humans , Lymphatic System
16.
Nature ; 582(7813): 582-585, 2020 06.
Article in English | MEDLINE | ID: mdl-32581372

ABSTRACT

Eukaryotic cells migrate by coupling the intracellular force of the actin cytoskeleton to the environment. While force coupling is usually mediated by transmembrane adhesion receptors, especially those of the integrin family, amoeboid cells such as leukocytes can migrate extremely fast despite very low adhesive forces1. Here we show that leukocytes cannot only migrate under low adhesion but can also transmit forces in the complete absence of transmembrane force coupling. When confined within three-dimensional environments, they use the topographical features of the substrate to propel themselves. Here the retrograde flow of the actin cytoskeleton follows the texture of the substrate, creating retrograde shear forces that are sufficient to drive the cell body forwards. Notably, adhesion-dependent and adhesion-independent migration are not mutually exclusive, but rather are variants of the same principle of coupling retrograde actin flow to the environment and thus can potentially operate interchangeably and simultaneously. As adhesion-free migration is independent of the chemical composition of the environment, it renders cells completely autonomous in their locomotive behaviour.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Movement , Cellular Microenvironment , T-Lymphocytes/cytology , Actins/metabolism , Animals , Cell Adhesion , Cell Line , Humans , Mice , T-Lymphocytes/metabolism , Talin/deficiency
17.
Nature ; 568(7753): 546-550, 2019 04.
Article in English | MEDLINE | ID: mdl-30944468

ABSTRACT

During metazoan development, immune surveillance and cancer dissemination, cells migrate in complex three-dimensional microenvironments1-3. These spaces are crowded by cells and extracellular matrix, generating mazes with differently sized gaps that are typically smaller than the diameter of the migrating cell4,5. Most mesenchymal and epithelial cells and some-but not all-cancer cells actively generate their migratory path using pericellular tissue proteolysis6. By contrast, amoeboid cells such as leukocytes use non-destructive strategies of locomotion7, raising the question how these extremely fast cells navigate through dense tissues. Here we reveal that leukocytes sample their immediate vicinity for large pore sizes, and are thereby able to choose the path of least resistance. This allows them to circumnavigate local obstacles while effectively following global directional cues such as chemotactic gradients. Pore-size discrimination is facilitated by frontward positioning of the nucleus, which enables the cells to use their bulkiest compartment as a mechanical gauge. Once the nucleus and the closely associated microtubule organizing centre pass the largest pore, cytoplasmic protrusions still lingering in smaller pores are retracted. These retractions are coordinated by dynamic microtubules; when microtubules are disrupted, migrating cells lose coherence and frequently fragment into migratory cytoplasmic pieces. As nuclear positioning in front of the microtubule organizing centre is a typical feature of amoeboid migration, our findings link the fundamental organization of cellular polarity to the strategy of locomotion.


Subject(s)
Cell Movement/physiology , Cell Nucleus/metabolism , Cell Polarity/physiology , Animals , Cell Line , Cells, Cultured , Chemotaxis/physiology , Female , Humans , Male , Mice, Inbred C57BL , Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Porosity
18.
Article in English | MEDLINE | ID: mdl-38636606

ABSTRACT

BACKGROUND: IgE-mediated degranulation of mast cells (MCs) provides rapid protection against environmental hazards, including animal venoms. A fraction of tissue-resident MCs intimately associates with blood vessels. These perivascular MCs were reported to extend projections into the vessel lumen and to be the first MCs to acquire intravenously injected IgE, suggesting that IgE loading of MCs depends on their vascular association. OBJECTIVE: We sought to elucidate the molecular basis of the MC-blood vessel interaction and to determine its relevance for IgE-mediated immune responses. METHODS: We selectively inactivated the Itgb1 gene, encoding the ß1 chain of integrin adhesion molecules (ITGB1), in MCs by conditional gene targeting in mice. We analyzed skin MCs for blood vessel association, surface IgE density, and capability to bind circulating antibody specific for MC surface molecules, as well as in vivo responses to antigen administered via different routes. RESULTS: Lack of ITGB1 expression severely compromised MC-blood vessel association. ITGB1-deficient MCs showed normal densities of surface IgE but reduced binding of intravenously injected antibodies. While their capacity to degranulate in response to IgE ligation in vivo was unimpaired, anaphylactic responses to antigen circulating in the vasculature were largely abolished. CONCLUSIONS: ITGB1-mediated association of MCs with blood vessels is key for MC immune surveillance of blood vessel content, but is dispensable for slow steady-state loading of endogenous IgE onto tissue-resident MCs.

19.
EMBO J ; 39(17): e104238, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32667089

ABSTRACT

Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine-tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re-organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin-sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.


Subject(s)
Arabidopsis/growth & development , Cell Differentiation , Cell Proliferation , Cytokinins/metabolism , Microtubules/metabolism , Plant Roots/growth & development , Animals , Arabidopsis/genetics , Cytokinins/genetics , Microtubules/genetics , Plant Roots/genetics
SELECTION OF CITATIONS
SEARCH DETAIL