ABSTRACT
Chronic wounds pose a significant challenge to healthcare. Stemming from impaired wound healing, the consequences can be severe, ranging from amputation to mortality. This comprehensive review explores the multifaceted impact of chronic wounds in medicine and the roles that diet and nutritional pathologies play in the wound-healing process. It has been well established that an adequate diet is crucial to proper wound healing. Nutrients such as vitamin D, zinc, and amino acids play significant roles in cellular regeneration, immune functioning, and collagen synthesis and processing. Additionally, this review discusses how patients with chronic conditions like diabetes, obesity, and nutritional deficiencies result in the formation of chronic wounds. By integrating current research findings, this review highlights the significant impact of the genetic make-up of an individual on the risk of developing chronic wounds and the necessity for adequate personalized dietary interventions. Addressing the nutritional needs of individuals, especially those with chronic conditions, is essential for improving wound outcomes and overall patient care. With new developments in the field of genomics, there are unprecedented opportunities to develop targeted interventions that can precisely address the unique metabolic needs of individuals suffering from chronic wounds, thereby enhancing treatment effectiveness and patient outcomes.
Subject(s)
Diet , Epigenesis, Genetic , Wound Healing , Humans , Wound Healing/genetics , Nutritional Status , Animals , Chronic DiseaseABSTRACT
Drosophila rhabdomeric terminal photoreceptor differentiation is an extended process taking several days to complete. Following ommatidial patterning by the morphogenetic furrow, photoreceptors are sequentially recruited and specified, and terminal differentiation begins. Key events of terminal differentiation include the establishment of apical and basolateral domains, rhabdomere and stalk formation, inter-rhabdomeral space formation, and expression of phototransduction machinery. While many key regulators of these processes have been identified, the complete network of transcription factors to downstream effector molecules necessary for regulating each of these major events remains incomplete. Here, we report an RNAi screen to identify additional molecules and cellular pathways required for photoreceptor terminal differentiation. First, we tested several eye-specific GAL4 drivers for correct spatial and temporal specificity and identified Pph13-GAL4 as the most appropriate GAL4 line for our screen. We screened lines available through the Transgenic RNAi Project and isolated lines that when combined with Pph13-GAL4 resulted in the loss of the deep pseudopupil, as a readout for abnormal differentiation. In the end, we screened 6,189 lines, representing 3,971 genes, and have identified 64 genes, illuminating potential new regulatory molecules and cellular pathways for the differentiation and organization of Drosophila rhabdomeric photoreceptors.