Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Neurobiol Dis ; 132: 104560, 2019 12.
Article in English | MEDLINE | ID: mdl-31419548

ABSTRACT

Body weight has been shown to be a predictor of clinical progression in Huntington's disease (HD). Alongside widespread neuronal pathology, both HD patients and the R6/2 mouse model of HD exhibit weight loss and increased energy expenditure, providing a rationale for targeting whole-body energy metabolism in HD. Leptin-deficient mice display low energy expenditure and increased body weight. We therefore hypothesized that normalizing energy metabolism in R6/2 mice, utilizing leptin- deficiency, would lead to a slower disease progression in the R6/2 mouse. In this study, we show that R6/2 mice on a leptin-deficient genetic background display increased body weight and increased fat mass compared to R6/2 mice, as well as wild type littermates. The increased body weight was accompanied by low energy expenditure, illustrated by a reduction in respiratory exchange rate. Leptin-deficient R6/2 mice had large white adipocytes with white adipocyte gene expression characteristics, in contrast to white adipose tissue in R6/2 mice, where white adipose tissue showed signs of browning. Leptin-deficient R6/2 mice did not exhibit improved neuropathological measures. Our results indicate that lowering energy metabolism in HD, by increasing fat mass and reducing respiratory exchange rate, is not sufficient to affect neuropathology. Further studies targeting energy metabolism in HD are warranted.


Subject(s)
Disease Models, Animal , Energy Metabolism/physiology , Huntington Disease/metabolism , Leptin/deficiency , Weight Loss/physiology , Animals , Female , Huntington Disease/genetics , Leptin/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Obese , Mice, Transgenic
2.
Biomolecules ; 13(3)2023 03 18.
Article in English | MEDLINE | ID: mdl-36979492

ABSTRACT

The activation of G Protein-Coupled Receptor 56 (GPR56), also referred to as Adhesion G-Protein-Coupled Ceceptor G1 (ADGRG1), by Collagen Type III (Coll III) prompts cell growth, proliferation, and survival, among other attributes. We investigated the signaling cascades mediating this functional effect in relation to the mitochondrial outer membrane voltage-dependent anion Channel-1 (VDAC1) expression in pancreatic ß-cells. GPR56KD attenuated the Coll III-induced suppression of P70S6K, JNK, AKT, NFκB, STAT3, and STAT5 phosphorylation/activity in INS-1 cells cultured at 20 mM glucose (glucotoxicity) for 72 h. GPR56-KD also increased Chrebp, Txnip, and Vdac1 while decreasing Vdac2 mRNA expression. In GPR56-KD islet ß-cells, Vdac1 was co-localized with SNAP-25, demonstrating its plasma membrane translocation. This resulted in ATP loss, reduced cAMP production and impaired glucose-stimulated insulin secretion (GSIS) in INS-1 and human EndoC ßH1 cells. The latter defects were reversed by an acute inhibition of VDAC1 with an antibody or the VDAC1 inhibitor VBIT-4. We demonstrate that Coll III potentiates GSIS by increasing cAMP and preserving ß-cell functionality under glucotoxic conditions in a GPR56-dependent manner by attenuating the inflammatory response. These results emphasize GPR56 and VDAC1 as drug targets in conditions with impaired ß-cell function.


Subject(s)
Islets of Langerhans , Receptors, G-Protein-Coupled , Voltage-Dependent Anion Channel 1 , Humans , Adenosine Triphosphate/metabolism , Cell Membrane/metabolism , Collagen Type III/metabolism , Glucose/pharmacology , Glucose/metabolism , Islets of Langerhans/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/metabolism
3.
J Huntingtons Dis ; 12(3): 253-266, 2023.
Article in English | MEDLINE | ID: mdl-37718850

ABSTRACT

BACKGROUND: Metabolic alterations contribute to disease onset and prognosis of Huntington's disease (HD). Weight loss in the R6/2 mouse model of HD is a consistent feature, with onset in mid-to-late stage of disease. OBJECTIVE: In the present study, we aimed to investigate molecular and functional changes in white adipose tissue (WAT) that occur at weight loss in R6/2 mice. We further elaborated on the effect of leptin-deficiency and early obesity in R6/2 mice. METHODS: We performed analyses at 12 weeks of age; a time point that coincides with the start of weight loss in our R6/2 mouse colony. Gonadal (visceral) and inguinal (subcutaneous) WAT depot weights were monitored, as well as adipocyte size distribution. Response to isoprenaline-stimulated glycerol release and insulin-stimulated glucose uptake in adipocytes from gonadal WAT was assessed. RESULTS: In R6/2 mice, WAT depot weights were comparable to wildtype (WT) mice, and the response to insulin and isoprenaline in gonadal adipocytes was unaltered. Leptin-deficient R6/2 mice exhibited distinct changes compared to leptin-deficient WT mice. At 12 weeks, female leptin-deficient R6/2 mice had reduced body weight accompanied by an increased proportion of smaller adipocytes, while in contrast; male mice displayed a shift towards larger adipocyte sizes without a significant body weight reduction at this timepoint. CONCLUSIONS: We here show that there are early sex-specific changes in adipocyte cell size distribution in WAT of R6/2 mice and leptin-deficient R6/2 mice.

4.
Clin Transl Med ; 11(7): e451, 2021 07.
Article in English | MEDLINE | ID: mdl-34323402

ABSTRACT

The MM500 meta-study aims to establish a knowledge basis of the tumor proteome to serve as a complement to genome and transcriptome studies. Somatic mutations and their effect on the transcriptome have been extensively characterized in melanoma. However, the effects of these genetic changes on the proteomic landscape and the impact on cellular processes in melanoma remain poorly understood. In this study, the quantitative mass-spectrometry-based proteomic analysis is interfaced with pathological tumor characterization, and associated with clinical data. The melanoma proteome landscape, obtained by the analysis of 505 well-annotated melanoma tumor samples, is defined based on almost 16 000 proteins, including mutated proteoforms of driver genes. More than 50 million MS/MS spectra were analyzed, resulting in approximately 13,6 million peptide spectrum matches (PSMs). Altogether 13 176 protein-coding genes, represented by 366 172 peptides, in addition to 52 000 phosphorylation sites, and 4 400 acetylation sites were successfully annotated. This data covers 65% and 74% of the predicted and identified human proteome, respectively. A high degree of correlation (Pearson, up to 0.54) with the melanoma transcriptome of the TCGA repository, with an overlap of 12 751 gene products, was found. Mapping of the expressed proteins with quantitation, spatiotemporal localization, mutations, splice isoforms, and PTM variants was proven not to be predicted by genome sequencing alone. The melanoma tumor molecular map was complemented by analysis of blood protein expression, including data on proteins regulated after immunotherapy. By adding these key proteomic pillars, the MM500 study expands the knowledge on melanoma disease.


Subject(s)
Melanoma/pathology , Proteome/metabolism , Proteomics/methods , Transcriptome , Antineoplastic Agents/therapeutic use , Blood Proteins/metabolism , Cell Line , Chromatography, High Pressure Liquid , Databases, Factual , Humans , Melanoma/drug therapy , Melanoma/metabolism , Mutation , Protein Processing, Post-Translational/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Tandem Mass Spectrometry
5.
Clin Transl Med ; 11(7): e473, 2021 07.
Article in English | MEDLINE | ID: mdl-34323403

ABSTRACT

The MM500 study is an initiative to map the protein levels in malignant melanoma tumor samples, focused on in-depth histopathology coupled to proteome characterization. The protein levels and localization were determined for a broad spectrum of diverse, surgically isolated melanoma tumors originating from multiple body locations. More than 15,500 proteoforms were identified by mass spectrometry, from which chromosomal and subcellular localization was annotated within both primary and metastatic melanoma. The data generated by global proteomic experiments covered 72% of the proteins identified in the recently reported high stringency blueprint of the human proteome. This study contributes to the NIH Cancer Moonshot initiative combining detailed histopathological presentation with the molecular characterization for 505 melanoma tumor samples, localized in 26 organs from 232 patients.


Subject(s)
Melanoma/pathology , Proteome/analysis , Proteomics/methods , Skin Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Chromatography, High Pressure Liquid , Female , Humans , Male , Melanoma/metabolism , Middle Aged , Skin Neoplasms/metabolism , Tandem Mass Spectrometry , Young Adult , Melanoma, Cutaneous Malignant
6.
Sci Rep ; 10(1): 18270, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106549

ABSTRACT

Huntington's disease (HD) is a progressive, multifaceted neurodegenerative disease associated with weight loss and gut problems. Under healthy conditions, tight junction (TJ) proteins maintain the intestinal barrier integrity preventing bacterial translocation from the intestinal lumen to the systemic circulation. Reduction of TJs expression in Parkinson's disease patients has been linked with increased intestinal permeability-leaky gut syndrome. The intestine contains microbiota, most dominant phyla being Bacteroidetes and Firmicutes; in pathogenic or disease conditions the balance between these bacteria might be disrupted. The present study investigated whether there is evidence for an increased intestinal permeability and dysbiosis in the R6/2 mouse model of HD. Our data demonstrate that decreased body weight and body length in R6/2 mice is accompanied by a significant decrease in colon length and increased gut permeability compared to wild type littermates, without any significant changes in the protein levels of the tight junction proteins (occludin, zonula occludens). Moreover, we found an altered gut microbiota in R6/2 mice with increased relative abundance of Bacteroidetes and decreased of Firmicutes. Our results indicate an increased intestinal permeability and dysbiosis in R6/2 mice and further studies investigating the clinical relevance of these findings are warranted.


Subject(s)
Bacteria/classification , Dysbiosis/diagnosis , Huntington Disease/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Bacterial Translocation , Body Weight , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Disease Models, Animal , Dysbiosis/metabolism , Female , Gastrointestinal Microbiome , Humans , Huntington Disease/metabolism , Male , Mice , Phylogeny , Tight Junction Proteins/metabolism
7.
Sci Rep ; 8(1): 8961, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29895889

ABSTRACT

Neuronal loss alongside altered energy metabolism, are key features of Huntington's disease (HD) pathology. The orexigenic gut-peptide hormone ghrelin is known to stimulate appetite and affect whole body energy metabolism. Liraglutide is an efficient anti-type 2 diabetes incretin drug, with neuroprotective effects alongside anorectic properties. Combining liraglutide with the orexigenic peptide ghrelin may potentially promote brain/cognitive function in HD. The R6/2 mouse model of HD exhibits progressive central pathology, weight loss, deranged glucose metabolism, skeletal muscle atrophy and altered body composition. In this study, we targeted energy metabolism in R6/2 mice using a co-administration of liraglutide and ghrelin. We investigated their effect on brain cortical hormone-mediated intracellular signalling pathways, metabolic and apoptotic markers, and the impact on motor function in HD. We here demonstrate that liraglutide, alone or together with ghrelin (subcutaneous daily injections of 150 µg/kg (ghrelin) and 0.2 mg/kg (liraglutide), for 2 weeks), normalized glucose homeostatic features in the R6/2 mouse, without substantially affecting body weight or body composition. Liraglutide alone decreased brain cortical active GLP-1 and IGF-1 levels in R6/2 mice, alongside higher ADP levels. Liraglutide plus ghrelin decreased brain insulin, lactate, AMP and cholesterol levels in R6/2 mice. Taken together, our findings encourage further studies targeting energy metabolism in HD.


Subject(s)
Brain/metabolism , Energy Metabolism/drug effects , Ghrelin/pharmacology , Huntington Disease/drug therapy , Liraglutide/pharmacology , Animals , Brain/pathology , Disease Models, Animal , Drug Therapy, Combination , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Male , Mice , Mice, Transgenic
8.
Sci Rep ; 7(1): 14114, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29074982

ABSTRACT

There is an unmet need to reliably and non-invasively monitor disease progression in preclinical Huntington's disease (HD) models. As a marker of axonal damage, neurofilament light chain (NfL) has been suggested a marker for neurodegeneration. NfL concentrations in blood and CSF were recently shown to have prognostic value for clinical HD progression and brain atrophy. We therefore hypothesized that CSF and blood NfL concentrations could be useful preclinical HD markers, reflecting underlying pathology. To test our hypothesis we utilized the R6/2 mouse model of HD and measured NfL concentrations in CSF and serum using the ultrasensitive Single molecule array (Simoa) platform. In addition, we assessed HD mouse disease characteristics. We found robust increases of NfL in CSF and serum in R6/2 mice compared to wild-type littermates. CSF and serum concentrations of NfL were significantly correlated, suggesting similar marker potential of serum NfL. CSF and serum concentrations of NfL correlated with disease severity, as assessed by striatal volume and body weight loss. We here provide evidence that CSF and blood NfL concentrations can be used as accessible and reliable pre-clinical HD markers. This will be of potential use for monitoring HD mouse model disease progression and evaluating preclinical disease-modifying treatment response.


Subject(s)
Huntington Disease/blood , Huntington Disease/cerebrospinal fluid , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Animals , Huntington Disease/pathology , Limit of Detection , Male , Mice
9.
Sci Rep ; 7(1): 13896, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29066728

ABSTRACT

Accumulating evidence suggests altered energy metabolism as a key feature in Huntington's disease (HD) pathology. Hyper-catabolism, including weight loss and muscle atrophy, is seen in HD patients and HD mouse models. Metabolic hormones are key players, not only in energy metabolism, but also in neurodegenerative processes. Ghrelin, a gut peptide-hormone, plays an important role in regulating energy metabolism, stimulating appetite, and affects brain function and increases neuronal survival. The R6/2 mouse model of HD has previously been shown to exhibit progressive weight loss, dysregulated glucose metabolism, skeletal muscle atrophy and altered body composition. In this study, we targeted energy metabolism in R6/2 mice using ghrelin administration, with the primary aim to delay weight loss and reduce muscle atrophy. We also evaluated glucose metabolism and behaviour. We here demonstrate that ghrelin administration (subcutaneous 150 µg/kg daily injections) for 4 weeks, reversed the catabolic gene expression profile (increased expression of Caspase 8, Traf-5 and Creb1) seen in R6/2 mouse skeletal muscle. Skeletal muscle morphology was also improved with ghrelin, and importantly, ghrelin administration normalized behavioural deficits in R6/2 mice. Taken together, our findings encourage further studies targeting metabolism in HD.


Subject(s)
Ghrelin/pharmacology , Huntington Disease/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Biomarkers/blood , Disease Models, Animal , Fatty Acids/metabolism , Ghrelin/therapeutic use , Glucose/metabolism , Homeostasis/drug effects , Humans , Huntington Disease/blood , Huntington Disease/complications , Huntington Disease/drug therapy , Liver/drug effects , Liver/metabolism , Male , Mice , Muscle, Skeletal/pathology , Muscular Atrophy/complications , Muscular Atrophy/drug therapy , Nesting Behavior/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL