Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 119(23): e2201301119, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35653571

ABSTRACT

In σ-dependent transcriptional pausing, the transcription initiation factor σ, translocating with RNA polymerase (RNAP), makes sequence-specific protein­DNA interactions with a promoter-like sequence element in the transcribed region, inducing pausing. It has been proposed that, in σ-dependent pausing, the RNAP active center can access off-pathway "backtracked" states that are substrates for the transcript-cleavage factors of the Gre family and on-pathway "scrunched" states that mediate pause escape. Here, using site-specific protein­DNA photocrosslinking to define positions of the RNAP trailing and leading edges and of σ relative to DNA at the λPR' promoter, we show directly that σ-dependent pausing in the absence of GreB in vitro predominantly involves a state backtracked by 2­4 bp, and σ-dependent pausing in the presence of GreB in vitro and in vivo predominantly involves a state scrunched by 2­3 bp. Analogous experiments with a library of 47 (∼16,000) transcribed-region sequences show that the state scrunched by 2­3 bp­and only that state­is associated with the consensus sequence, T−3N−2Y−1G+1, (where −1 corresponds to the position of the RNA 3' end), which is identical to the consensus for pausing in initial transcription and which is related to the consensus for pausing in transcription elongation. Experiments with heteroduplex templates show that sequence information at position T−3 resides in the DNA nontemplate strand. A cryoelectron microscopy structure of a complex engaged in σ-dependent pausing reveals positions of DNA scrunching on the DNA nontemplate and template strands and suggests that position T−3 of the consensus sequence exerts its effects by facilitating scrunching.


Subject(s)
DNA-Directed RNA Polymerases , Transcription, Genetic , Cryoelectron Microscopy , DNA , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics
2.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: mdl-34187896

ABSTRACT

Chemical modifications of RNA 5'-ends enable "epitranscriptomic" regulation, influencing multiple aspects of RNA fate. In transcription initiation, a large inventory of substrates compete with nucleoside triphosphates for use as initiating entities, providing an ab initio mechanism for altering the RNA 5'-end. In Escherichia coli cells, RNAs with a 5'-end hydroxyl are generated by use of dinucleotide RNAs as primers for transcription initiation, "primer-dependent initiation." Here, we use massively systematic transcript end readout (MASTER) to detect and quantify RNA 5'-ends generated by primer-dependent initiation for ∼410 (∼1,000,000) promoter sequences in E. coli The results show primer-dependent initiation in E. coli involves any of the 16 possible dinucleotide primers and depends on promoter sequences in, upstream, and downstream of the primer binding site. The results yield a consensus sequence for primer-dependent initiation, YTSS-2NTSS-1NTSSWTSS+1, where TSS is the transcription start site, NTSS-1NTSS is the primer binding site, Y is pyrimidine, and W is A or T. Biochemical and structure-determination studies show that the base pair (nontemplate-strand base:template-strand base) immediately upstream of the primer binding site (Y:RTSS-2, where R is purine) exerts its effect through the base on the DNA template strand (RTSS-2) through interchain base stacking with the RNA primer. Results from analysis of a large set of natural, chromosomally encoded Ecoli promoters support the conclusions from MASTER. Our findings provide a mechanistic and structural description of how TSS-region sequence hard-codes not only the TSS position but also the potential for epitranscriptomic regulation through primer-dependent transcription initiation.


Subject(s)
DNA Primers/metabolism , Escherichia coli/genetics , Promoter Regions, Genetic , Transcription Initiation, Genetic , Base Sequence , Binding Sites , Chromosomes, Bacterial/genetics , Gene Expression Regulation, Bacterial , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Initiation Site
3.
PLoS Genet ; 11(7): e1005348, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26131907

ABSTRACT

Transcription initiation that involves the use of a 2- to ~4-nt oligoribonucleotide primer, "primer-dependent initiation," (PDI) has been shown to be widely prevalent at promoters of genes expressed during the stationary phase of growth in Escherichia coli. However, the extent to which PDI impacts E. coli physiology, and the extent to which PDI occurs in other bacteria is not known. Here we establish a physiological role for PDI in E. coli as a regulatory mechanism that modulates biofilm formation. We further demonstrate using high-throughput sequencing of RNA 5' ends (5' RNA-seq) that PDI occurs in the pathogenic bacterium Vibrio cholerae. A comparative global analysis of PDI in V. cholerae and E. coli reveals that the pattern of PDI is strikingly similar in the two organisms. In particular, PDI is detected in stationary phase, is not detected in exponential phase, and is preferentially apparent at promoters carrying the sequence T-1A+1 or G-1G+1 (where position +1 corresponds to the position of de novo initiation). Our findings demonstrate a physiological role for PDI and suggest PDI may be widespread among Gammaproteobacteria. We propose that PDI in both E. coli and V. cholerae occurs though a growth phase-dependent process that leads to the preferential generation of the linear dinucleotides 5´-UA-3´ and 5´-GG-3´.


Subject(s)
Biofilms/growth & development , Escherichia coli/genetics , Promoter Regions, Genetic/genetics , Transcription Initiation, Genetic/physiology , Vibrio cholerae/genetics , 5' Untranslated Regions/genetics , Bacterial Outer Membrane Proteins/genetics , Base Sequence , Escherichia coli Proteins/genetics , Gammaproteobacteria/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Sequence Analysis, RNA
4.
bioRxiv ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-36874203

ABSTRACT

Changes in an organism's environment, genome, or gene expression patterns can lead to changes in its metabolism. The metabolic phenotype can be under selection and contributes to adaptation. However, the networked and convoluted nature of an organism's metabolism makes relating mutations, metabolic changes, and effects on fitness challenging. To overcome this challenge, we use the Long-Term Evolution Experiment (LTEE) with E. coli as a model to understand how mutations can eventually affect metabolism and perhaps fitness. We used mass-spectrometry to broadly survey the metabolomes of the ancestral strains and all 12 evolved lines. We combined this metabolic data with mutation and expression data to suggest how mutations that alter specific reaction pathways, such as the biosynthesis of nicotinamide adenine dinucleotide, might increase fitness in the system. Our work provides a better understanding of how mutations might affect fitness through the metabolic changes in the LTEE and thus provides a major step in developing a complete genotype-phenotype map for this experimental system.

5.
Elife ; 122023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991493

ABSTRACT

Changes in an organism's environment, genome, or gene expression patterns can lead to changes in its metabolism. The metabolic phenotype can be under selection and contributes to adaptation. However, the networked and convoluted nature of an organism's metabolism makes relating mutations, metabolic changes, and effects on fitness challenging. To overcome this challenge, we use the long-term evolution experiment (LTEE) with E. coli as a model to understand how mutations can eventually affect metabolism and perhaps fitness. We used mass spectrometry to broadly survey the metabolomes of the ancestral strains and all 12 evolved lines. We combined this metabolic data with mutation and expression data to suggest how mutations that alter specific reaction pathways, such as the biosynthesis of nicotinamide adenine dinucleotide, might increase fitness in the system. Our work provides a better understanding of how mutations might affect fitness through the metabolic changes in the LTEE and thus provides a major step in developing a complete genotype-phenotype map for this experimental system.


Subject(s)
Adaptation, Physiological , Escherichia coli , Escherichia coli/genetics , Phenotype , Genotype , Mutation , Adaptation, Physiological/genetics , Evolution, Molecular
6.
Methods Mol Biol ; 2404: 83-110, 2022.
Article in English | MEDLINE | ID: mdl-34694605

ABSTRACT

The emergence of ribosome profiling as a tool for measuring the translatome has provided researchers with valuable insights into the post-transcriptional regulation of gene expression. Despite the biological insights and technical improvements made since the technique was initially described by Ingolia et al. (Science 324(5924):218-223, 2009), ribosome profiling measurements and subsequent data analysis remain challenging. Here, we describe our lab's protocol for performing ribosome profiling in bacteria, yeast, and mammalian cells. This protocol has integrated elements from three published ribosome profiling methods. In addition, we describe a tool called RiboViz (Carja et al., BMC Bioinformatics 18:461, 2017) ( https://github.com/riboviz/riboviz ) for the analysis and visualization of ribosome profiling data. Given raw sequencing reads and transcriptome information (e.g., FASTA, GFF) for a species, RiboViz performs the necessary pre-processing and mapping of the raw sequencing reads. RiboViz also provides the user with various quality control visualizations.


Subject(s)
Ribosomes , Gene Expression Profiling , Gene Expression Regulation , Protein Biosynthesis , Quality Control , RNA, Messenger/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Sequence Analysis, RNA , Transcriptome
7.
ACS Synth Biol ; 10(4): 682-689, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33749248

ABSTRACT

Detection of azide-tagged biomolecules (e.g., azido sugars) inside living cells using "click" chemistry has been revolutionary to the field of chemical biology. However, we currently still lack suitable synthetic biology tools to autonomously and rapidly detect azide ions. Here, we have developed an engineered synthetic promoter system called cyn regulon, and complementary Escherichia coli engineered strains, to selectively detect azide ions and autonomously induce downstream expression of reporter genes. The engineered cyn azide operon allowed highly tunable reporter green fluorescent protein (GFP) expression over three orders of inducer azide ion concentrations (0.01-5 mM) and rapidly induced GFP expression by over 600-fold compared to the uninduced control. Next, we showcase the superior performance of this engineered cyn-operon over the classical lac-operon for recombinant protein production. Finally, we highlight how this synthetic biology toolkit can enable glycoengineering-based applications by facilitating in vivo activity screening of mutant carbohydrate-active enzymes (CAZymes), called glycosynthases, using azido sugars as donor substrates.


Subject(s)
Azides/metabolism , Bioengineering/methods , Recombinant Proteins/metabolism , Regulon/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Promoter Regions, Genetic/genetics , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL