Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cancer Immunol Immunother ; 73(6): 114, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693435

ABSTRACT

BACKGROUND: Advancements in immunotherapeutic approaches only had a modest impact on the therapy of lung neuroendocrine neoplasms (LNENs). Our multicenter study aimed to investigate the expression patterns of novel immunotherapy targets in intermediate- and high-grade LNENs. METHODS: The expressions of V-domain Ig suppressor of T cell activation (VISTA), OX40L, Glucocorticoid-induced TNF receptor (GITR), and T cell immunoglobulin and mucin domain 3 (TIM3) proteins were measured by immunohistochemistry in surgically resected tumor samples of 26 atypical carcinoid (AC), 49 large cell neuroendocrine lung cancer (LCNEC), and 66 small cell lung cancer (SCLC) patients. Tumor and immune cells were separately scored. RESULTS: Tumor cell TIM3 expression was the highest in ACs (p < 0.001), whereas elevated tumor cell GITR levels were characteristic for both ACs and SCLCs (p < 0.001 and p = 0.011, respectively). OX40L expression of tumor cells was considerably lower in ACs (vs. SCLCs; p < 0.001). Tumor cell VISTA expression was consistently low in LNENs, with no significant differences across histological subtypes. ACs were the least immunogenic tumors concerning immune cell abundance (p < 0.001). Immune cell VISTA and GITR expressions were also significantly lower in these intermediate-grade malignancies than in SCLCs or in LCNECs. Immune cell TIM3 and GITR expressions were associated with borderline prognostic significance in our multivariate model (p = 0.057 and p = 0.071, respectively). CONCLUSIONS: LNEN subtypes have characteristic and widely divergent VISTA, OX40L, GITR, and TIM3 protein expressions. By shedding light on the different expression patterns of these immunotherapy targets, the current multicenter study provides support for the future implementation of novel immunotherapeutic approaches.


Subject(s)
Biomarkers, Tumor , Glucocorticoid-Induced TNFR-Related Protein , Hepatitis A Virus Cellular Receptor 2 , Immunotherapy , Lung Neoplasms , Neuroendocrine Tumors , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Male , Female , Hepatitis A Virus Cellular Receptor 2/metabolism , Immunotherapy/methods , Neuroendocrine Tumors/immunology , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/therapy , Neuroendocrine Tumors/pathology , Middle Aged , Aged , Glucocorticoid-Induced TNFR-Related Protein/metabolism , Biomarkers, Tumor/metabolism , B7 Antigens/metabolism , Adult , Neoplasm Grading , OX40 Ligand/metabolism , Prognosis , Aged, 80 and over
2.
J Transl Med ; 22(1): 426, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711085

ABSTRACT

BACKGROUND: Programmed cell death 1 (PD-1) belongs to immune checkpoint proteins ensuring negative regulation of the immune response. In non-small cell lung cancer (NSCLC), the sensitivity to treatment with anti-PD-1 therapeutics, and its efficacy, mostly correlated with the increase of tumor infiltrating PD-1+ lymphocytes. Due to solid tumor heterogeneity of PD-1+ populations, novel low molecular weight anti-PD-1 high-affinity diagnostic probes can increase the reliability of expression profiling of PD-1+ tumor infiltrating lymphocytes (TILs) in tumor tissue biopsies and in vivo mapping efficiency using immune-PET imaging. METHODS: We designed a 13 kDa ß-sheet Myomedin scaffold combinatorial library by randomization of 12 mutable residues, and in combination with ribosome display, we identified anti-PD-1 Myomedin variants (MBA ligands) that specifically bound to human and murine PD-1-transfected HEK293T cells and human SUP-T1 cells spontaneously overexpressing cell surface PD-1. RESULTS: Binding affinity to cell-surface expressed human and murine PD-1 on transfected HEK293T cells was measured by fluorescence with LigandTracer and resulted in the selection of most promising variants MBA066 (hPD-1 KD = 6.9 nM; mPD-1 KD = 40.5 nM), MBA197 (hPD-1 KD = 29.7 nM; mPD-1 KD = 21.4 nM) and MBA414 (hPD-1 KD = 8.6 nM; mPD-1 KD = 2.4 nM). The potential of MBA proteins for imaging of PD-1+ populations in vivo was demonstrated using deferoxamine-conjugated MBA labeled with 68Galium isotope. Radiochemical purity of 68Ga-MBA proteins reached values 94.7-99.3% and in vitro stability in human serum after 120 min was in the range 94.6-98.2%. The distribution of 68Ga-MBA proteins in mice was monitored using whole-body positron emission tomography combined with computerized tomography (PET/CT) imaging up to 90 min post-injection and post mortem examined in 12 mouse organs. The specificity of MBA proteins was proven by co-staining frozen sections of human tonsils and NSCLC tissue biopsies with anti-PD-1 antibody, and demonstrated their potential for mapping PD-1+ populations in solid tumors. CONCLUSIONS: Using directed evolution, we developed a unique set of small binding proteins that can improve PD-1 diagnostics in vitro as well as in vivo using PET/CT imaging.


Subject(s)
Positron-Emission Tomography , Programmed Cell Death 1 Receptor , Protein Engineering , Humans , Programmed Cell Death 1 Receptor/metabolism , Animals , Positron-Emission Tomography/methods , HEK293 Cells , Mice , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Amino Acid Sequence
3.
Cell Commun Signal ; 22(1): 261, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715108

ABSTRACT

BACKGROUND: Interleukin-6 (IL-6) is a multifunctional cytokine that controls the immune response, and its role has been described in the development of autoimmune diseases. Signaling via its cognate IL-6 receptor (IL-6R) complex is critical in tumor progression and, therefore, IL-6R represents an important therapeutic target. METHODS: An albumin-binding domain-derived highly complex combinatorial library was used to select IL-6R alpha (IL-6Rα)-targeted small protein binders using ribosome display. Large-scale screening of bacterial lysates of individual clones was performed using ELISA, and their IL-6Rα blocking potential was verified by competition ELISA. The binding of proteins to cells was monitored by flow cytometry and confocal microscopy on HEK293T-transfected cells, and inhibition of signaling function was examined using HEK-Blue IL-6 reporter cells. Protein binding kinetics to living cells was measured by LigandTracer, cell proliferation and toxicity by iCELLigence and Incucyte, cell migration by the scratch wound healing assay, and prediction of binding poses using molecular modeling by docking. RESULTS: We demonstrated a collection of protein variants called NEF ligands, selected from an albumin-binding domain scaffold-derived combinatorial library, and showed their binding specificity to human IL-6Rα and antagonistic effect in HEK-Blue IL-6 reporter cells. The three most promising NEF108, NEF163, and NEF172 variants inhibited cell proliferation of malignant melanoma (G361 and A2058) and pancreatic (PaTu and MiaPaCa) cancer cells, and suppressed migration of malignant melanoma (A2058), pancreatic carcinoma (PaTu), and glioblastoma (GAMG) cells in vitro. The NEF binders also recognized maturation-induced IL-6Rα expression and interfered with IL-6-induced differentiation in primary human B cells. CONCLUSION: We report on the generation of small protein blockers of human IL-6Rα using directed evolution. NEF proteins represent a promising class of non-toxic anti-tumor agents with migrastatic potential.


Subject(s)
Cell Movement , Cell Proliferation , Receptors, Interleukin-6 , Humans , Cell Proliferation/drug effects , Receptors, Interleukin-6/metabolism , Cell Movement/drug effects , HEK293 Cells , Cell Line, Tumor , Protein Binding/drug effects
4.
Gen Physiol Biophys ; 43(1): 49-55, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38312034

ABSTRACT

The objective of this article is to describe and classify usual interstitial pneumonia (UIP) changes according to their relevance in the pathology of the idiopathic pulmonary fibrosis (IPF) process. In a cohort of 50 patients (25♀, 25♂) with UIP findings, the percentage ratio between fibrotic and preserved parts of the lungs was quantified. Three quantitative stages of fibrotic involvement of the lung parenchyma and concomitant changes were defined. These are initial (≤20%), advanced (21-40%), and diffuse (≥41%) fibrosis of the lungs. Histologically, temporal heterogeneity is predominant with thickened alveolar septa, interstitial fibrosis, and the presence of fibroblastic foci up to mature diffuse fibrosis with honeycomb changes. The finding is accompanied by variably mature lymphocytic inflammation, presence of macrophages, emphysema, bronchioloectasia of the alveoli, bronchiectasis, bronchial muscle wall hypertrophy, hypertrophy of the vessel walls, alveolar mucosa, focal haemorrhage, and hyalinization of the lungs. Pneumocyte hyperplasia, occasionally atypical in appearance with hobnail changes, as well as squamous metaplasia are observed. In the methodically quantified stages of fibrous involvement, 14 subjects were classified (6♀, 8♂) into the stage of initial fibrosis, 21 subjects (11♀; 10♂) into the stage of advanced fibrosis, and 15 subjects (8♀; 7♂) into the stage of diffuse fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Biopsy , Fibrosis , Hypertrophy/pathology
5.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674026

ABSTRACT

Glioblastoma is currently considered the most common and, unfortunately, also the most aggressive primary brain tumor, with the highest morbidity and mortality rates. The average survival of patients diagnosed with glioblastoma is 14 months, and only 2% of patients survive 3 years after surgery. Based on our clinical experience and knowledge from extensive clinical studies, survival is mainly related to the molecular biological properties of glioblastoma, which are of interest to the general medical community. Our study examined a total of 71 retrospective studies published from 2016 through 2022 and available on PubMed that deal with mutations of selected genes in the pathophysiology of GBM. In conclusion, we can find other mutations within a given gene group that have different effects on the prognosis and quality of survival of a patient with glioblastoma. These mutations, together with the associated mutations of other genes, as well as intratumoral heterogeneity itself, offer enormous potential for further clinical research and possible application in therapeutic practice.


Subject(s)
Brain Neoplasms , Glioblastoma , Mutation , Glioblastoma/genetics , Glioblastoma/diagnosis , Glioblastoma/pathology , Glioblastoma/mortality , Humans , Brain Neoplasms/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Prognosis , Biomarkers, Tumor/genetics , Clinical Relevance
6.
Front Immunol ; 15: 1342086, 2024.
Article in English | MEDLINE | ID: mdl-38384472

ABSTRACT

Non-small cell lung cancer (NSCLC) is largely promoted by a multistep tumorigenesis process involving various genetic and epigenetic alterations, which essentially contribute to the high incidence of mortality among patients with NSCLC. Clinical observations revealed that NSCLC also co-opts a multifaceted immune checkpoint dysregulation as an important driving factor in NSCLC progression and development. For example, a deregulated PI3K/AKT/mTOR pathway has been noticed in 50-70% of NSCLC cases, primarily modulated by mutations in key oncogenes such as ALK, EGFR, KRAS, and others. Additionally, genetic association studies containing patient-specific factors and local reimbursement criteria expose/reveal mutations in EGFR/ALK/ROS/BRAF/KRAS/PD-L1 proteins to determine the suitability of available immunotherapy or tyrosine kinase inhibitor therapy. Thus, the expression of such checkpoints on tumors and immune cells is pivotal in understanding the therapeutic efficacy and has been extensively studied for NSCLC treatments. Therefore, this review summarizes current knowledge in NSCLC tumorigenesis, focusing on its genetic and epigenetic intricacies, immune checkpoint dysregulation, and the evolving landscape of targeted therapies. In the context of current and future therapies, we emphasize the significance of antibodies targeting PD-1/PD-L1 and CTLA-4 interactions as the primary therapeutic strategy for immune system reactivation in NSCLC. Other approaches involving the promising potential of nanobodies, probodies, affibodies, and DARPINs targeting immune checkpoints are also described; these are under active research or clinical trials to mediate immune regulation and reduce cancer progression. This comprehensive review underscores the multifaceted nature, current state and future directions of NSCLC research and treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , B7-H1 Antigen/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins p21(ras) , Cell Transformation, Neoplastic , Carcinogenesis , Receptor Protein-Tyrosine Kinases/metabolism , ErbB Receptors/metabolism
7.
Pol J Microbiol ; 72(4): 365-375, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38103006

ABSTRACT

There have been studies on antibiotic use concerning lung cancer and its potential impact on carcinogenesis and microbiome. However, subsequent research has failed to support these associations consistently. In terms of the potential carcinogenic of antibiotics on lung cancer, the available evidence has not been sufficient to draw any definitive conclusions. Maintaining immune homeostasis and preventing pathogen invasion is critically dependent on the microbiome. The subtle balance of the body microbiota, including the lungs, is susceptible to disruption by antibiotic use. There is an association between disruptions of the lung microbiome and respiratory diseases, including lung cancer, and decreased efficacy of treatments. Patients with lung cancer are often indicated for antibiotic treatment due to respiratory infections or other comorbidities. Pulmonary infections in the area of undetected lung tumors are not uncommon. They can be an early sign of malignancy, which may explain the association between antibiotic use and lung cancer diagnosis. Antibiotic use can also affect the effectiveness of immune checkpoint inhibitor therapy. Studies suggest that antibiotic use can impair the efficacy of immune checkpoint inhibitor therapy in lung cancer patients, particularly around the time when treatment is initiated. These findings require further study, understanding underlying mechanisms, and identifying microbiota signatures associated with treatment response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Anti-Bacterial Agents/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Lung/pathology
8.
Pol J Microbiol ; 72(4): 467-475, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38103007

ABSTRACT

Lung malignancies have a substantial impact on cancer incidence and mortality worldwide. Even though many factors involved in the development of the disease are known, many questions remain unanswered. Previous studies suggest that the intestinal microbiota may have a role in developing malignant diseases. According to some findings, the microbiota has proven to be a key modulator of carcinogenic processes and the immune response against cancer cells, potentially influencing the effectiveness of immunotherapy. In our study, we characterized culturable microorganisms associated with non-small cell lung cancer (NSCLC) that can be recovered from rectal swabs and mouthwash. In addition, we also explored differences in the culturable microbiota with two main types of NSCLC - adenocarcinoma (ADC) and squamous cell carcinoma (SCC). With 141 patients included in the study (86 ADC and 55 SCC cases), a significant difference was observed between the two types in seven bacterial species (Collinsella, Corynebacterium, Klebsiella, Lactobacillus, Neisseria, Rothia, and Streptococcus), including the site of origin. The relationship between microbial dysbiosis and lung cancer is poorly understood; future research could shed light on the links between gut microbiota and lung cancer development.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Microbiota , Humans , Carcinoma, Non-Small-Cell Lung/microbiology , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/microbiology , Lung Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL