Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell Mol Life Sci ; 80(12): 369, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989805

ABSTRACT

Mutations of large conductance Ca2+- and voltage-activated K+ channels (BK) are associated with cognitive impairment. Here we report that CA1 pyramidal neuron-specific conditional BK knock-out (cKO) mice display normal locomotor and anxiety behavior. They do, however, exhibit impaired memory acquisition and retrieval in the Morris Water Maze (MWM) when compared to littermate controls (CTRL). In line with cognitive impairment in vivo, electrical and chemical long-term potentiation (LTP) in cKO brain slices were impaired in vitro. We further used a genetically encoded fluorescent K+ biosensor and a Ca2+-sensitive probe to observe cultured hippocampal neurons during chemical LTP (cLTP) induction. cLTP massively reduced intracellular K+ concentration ([K+]i) while elevating L-Type Ca2+ channel- and NMDA receptor-dependent Ca2+ oscillation frequencies. Both, [K+]i decrease and Ca2+ oscillation frequency increase were absent after pharmacological BK inhibition or in cells lacking BK. Our data suggest that L-Type- and NMDAR-dependent BK-mediated K+ outflow significantly contributes to hippocampal LTP, as well as learning and memory.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels , Long-Term Potentiation , Mice , Animals , Long-Term Potentiation/physiology , Large-Conductance Calcium-Activated Potassium Channels/genetics , Neuronal Plasticity/physiology , Hippocampus/physiology , Neurons , Mice, Knockout
2.
Cell Mol Life Sci ; 78(23): 7569-7587, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34664085

ABSTRACT

Human mutations of the Na+-activated K+ channel Slack (KCNT1) are associated with epilepsy and intellectual disability. Accordingly, Slack knockout mice (Slack-/-) exhibit cognitive flexibility deficits in distinct behavioral tasks. So far, however, the underlying causes as well as the role of Slack in hippocampus-dependent memory functions remain enigmatic. We now report that infant (P6-P14) Slack-/- lack both hippocampal LTD and LTP, likely due to impaired NMDA receptor (NMDAR) signaling. Postsynaptic GluN2B levels are reduced in infant Slack-/-, evidenced by lower amplitudes of NMDAR-meditated excitatory postsynaptic potentials. Low GluN2B affected NMDAR-mediated Ca2+-influx, rendering cultured hippocampal Slack-/-neurons highly insensitive to the GluN2B-specific inhibitor Ro 25-6981. Furthermore, dephosphorylation of the AMPA receptor (AMPAR) subunit GluA1 at S845, which is involved in AMPAR endocytosis during homeostatic and neuromodulator-regulated plasticity, is reduced after chemical LTD (cLTD) in infant Slack-/-. We additionally detect a lack of mGluR-induced LTD in infant Slack-/-, possibly caused by upregulation of the recycling endosome-associated small GTPase Rab4 which might accelerate AMPAR recycling from early endosomes. Interestingly, LTP and mGluR LTD, but not LTD and S845 dephosphorylation after cLTD are restored in adult Slack-/-. This together with normalized expression levels of GluN2B and Rab4 hints to developmental "restoration" of LTP expression despite Slack ablation, whereas in infant and adult brain, NMDAR-dependent LTD induction depends on this channel. Based on the present findings, NMDAR and vesicular transport might represent novel targets for the therapy of intellectual disability associated with Slack mutations. Consequently, careful modulation of hippocampal Slack activity should also improve learning abilities.


Subject(s)
Action Potentials , Hippocampus/physiology , Long-Term Potentiation , Nerve Tissue Proteins/physiology , Neuronal Plasticity , Neurons/physiology , Potassium Channels, Sodium-Activated/physiology , Synapses/physiology , Animals , Animals, Newborn , Calcium/metabolism , Excitatory Postsynaptic Potentials , Long-Term Synaptic Depression , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
3.
Cardiovasc Res ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102831

ABSTRACT

AIMS: Na+-activated Slack potassium (K+) channels are increasingly recognized as regulators of neuronal activity, yet little is known about their role in the cardiovascular system. Slack activity increases when intracellular Na+ concentration ([Na+]i) reaches pathophysiological levels. Elevated [Na+]i is a major determinant of the ischemia and reperfusion (I/R)-induced myocardial injury, thus we hypothesized that Slack plays a role under these conditions. METHODS: and results: K+ currents in cardiomyocytes (CMs) obtained from wildtype (WT) but not from global Slack knockout (KO) mice were sensitive to electrical inactivation of voltage-sensitive Na+-channels. Live-cell imaging demonstrated that K+ fluxes across the sarcolemma rely on Slack, while the depolarized resting membrane potential in Slack-deficient CMs led to excessive cytosolic Ca2+ accumulation and finally to hypoxia/reoxygenation-induced cell death. Cardiac damage in an in vivo model of I/R was exacerbated in global and CM-specific conditional Slack mutants and largely insensitive to mechanical conditioning maneuvers. Finally, the protection conferred by mitochondrial ATP-dependent K+ channels required functional Slack in CMs. CONCLUSIONS: Collectively, our study provides evidence for Slack's crucial involvement in the ion homeostasis of no or low O2-stressed CMs. Thereby, Slack activity opposes the I/R-induced fatal Ca2+-uptake to CMs supporting the cardioprotective signaling widely attributed to mitoKATP function.

4.
Commun Biol ; 6(1): 1029, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821582

ABSTRACT

Mutations of the Na+-activated K+ channel Slack (KCNT1) are associated with terrible epilepsy syndromes that already begin in infancy. Here we report increased severity of acute kainic acid-induced seizures in adult and juvenile Slack knockout mice (Slack-/-) in vivo. Fittingly, we find exacerbation of cell death following kainic acid exposure in organotypic hippocampal slices as well as dissociated hippocampal cultures from Slack-/- in vitro. Furthermore, in cultured Slack-/- neurons, kainic acid-triggered Ca2+ influx and K+ efflux as well as depolarization-induced tetrodotoxin-sensitive inward currents are higher compared to the respective controls. This apparent changes in ion homeostasis could possibly explain altered action potential kinetics of Slack-/- neurons: steeper rise slope, decreased threshold, and duration of afterhyperpolarization, which ultimately lead to higher action potential frequencies during kainic acid application or injection of depolarizing currents. Based on our data, we propose Slack as crucial gatekeeper of neuronal excitability to acutely limit seizure severity.


Subject(s)
Kainic Acid , Potassium Channels , Mice , Animals , Potassium Channels/genetics , Potassium Channels, Sodium-Activated/genetics , Potassium Channels, Sodium-Activated/metabolism , Kainic Acid/toxicity , Kainic Acid/metabolism , Neurons/physiology , Seizures/chemically induced , Seizures/metabolism , Mice, Knockout
5.
iScience ; 25(9): 104907, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36046190

ABSTRACT

Ion and analyte changes in the tumor microenvironment (TME) alter the metabolic activity of cancer cells, promote tumor cell growth, and impair anti-tumor immunity. Consequently, accurate determination and visualization of extracellular changes of analytes in real time is desired. In this study, we genetically combined FRET-based biosensors with nanobodies (Nbs) to specifically visualize and monitor extracellular changes in K+, pH, and glucose on cell surfaces. We demonstrated that these Nb-fused biosensors quantitatively visualized K+ alterations on cancer and non-cancer cell lines and primary neurons. By implementing a HER2-specific Nb, we generated functional K+ and pH sensors, which specifically stained HER2-positive breast cancer cells. Based on the successful development of several Nb-fused biosensor combinations, we anticipate that this approach can be readily extended to other biosensors and will open new opportunities for the study of extracellular analytes in advanced experimental settings.

SELECTION OF CITATIONS
SEARCH DETAIL