Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Immunol ; 212(8): 1381-1391, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38416029

ABSTRACT

Granzymes are a family of proteases used by CD8 T cells to mediate cytotoxicity and other less-defined activities. The substrate and mechanism of action of many granzymes are unknown, although they diverge among the family members. In this study, we show that mouse CD8+ tumor-infiltrating lymphocytes (TILs) express a unique array of granzymes relative to CD8 T cells outside the tumor microenvironment in multiple tumor models. Granzyme F was one of the most highly upregulated genes in TILs and was exclusively detected in PD1/TIM3 double-positive CD8 TILs. To determine the function of granzyme F and to improve the cytotoxic response to leukemia, we constructed chimeric Ag receptor T cells to overexpress a single granzyme, granzyme F or the better-characterized granzyme A or B. Using these doubly recombinant T cells, we demonstrated that granzyme F expression improved T cell-mediated cytotoxicity against target leukemia cells and induced a form of cell death other than chimeric Ag receptor T cells expressing only endogenous granzymes or exogenous granzyme A or B. However, increasing expression of granzyme F also had a detrimental impact on the viability of the host T cells, decreasing their persistence in circulation in vivo. These results suggest a unique role for granzyme F as a marker of terminally differentiated CD8 T cells with increased cytotoxicity, but also increased self-directed cytotoxicity, suggesting a potential mechanism for the end of the terminal exhaustion pathway.


Subject(s)
Leukemia , Receptors, Chimeric Antigen , Animals , Mice , CD8-Positive T-Lymphocytes , Granzymes , Leukemia/metabolism , Receptors, Chimeric Antigen/metabolism , Tumor Microenvironment , Cytotoxicity, Immunologic
2.
Semin Immunol ; 47: 101395, 2020 02.
Article in English | MEDLINE | ID: mdl-32205022

ABSTRACT

T cells recognize and respond to self antigens in both cancer and autoimmunity. One strategy to influence this response is to incorporate amino acid substitutions into these T cell-specific epitopes. This strategy is being reconsidered now with the goal of increasing time to regression with checkpoint blockade therapies in cancer and antigen-specific immunotherapies in autoimmunity. We discuss how these amino acid substitutions change the interactions with the MHC class I or II molecule and the responding T cell repertoire. Amino acid substitutions in epitopes that are the most effective in therapies bind more strongly to T cell receptor and/or MHC molecules and cross-react with the same repertoire of T cells as the natural antigen.


Subject(s)
Autoimmunity , Epitopes/immunology , Immunomodulation , Neoplasms/etiology , Peptides/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Amino Acid Substitution , Animals , Cross Reactions , Disease Susceptibility/immunology , Epitopes/genetics , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Humans , Mutation , Neoplasms/metabolism , Neoplasms/pathology , Peptides/genetics , Receptors, Antigen, T-Cell/metabolism
3.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074778

ABSTRACT

Tumors frequently express unmutated self-tumor-associated antigens (self-TAAs). However, trial results using self-TAAs as vaccine targets against cancer are mixed, often attributed to deletion of T cells with high-affinity receptors (TCRs) for self-TAAs during T cell development. Mutating these weak self-TAAs to produce higher affinity, effective vaccines is challenging, since the mutations may not benefit all members of the broad self-TAA-specific T cell repertoire. We previously identified a common weak murine self-TAA that we converted to a highly effective antitumor vaccine by a single amino acid substitution. In this case the modified and natural self-TAAs still raised very similar sets of CD8 T cells. Our structural studies herein show that the modification of the self-TAA resulted in a subtle change in the major histocompatibility complex I-TAA structure. This amino acid substitution allowed a dramatic conformational change in the peptide during subsequent TCR engagement, creating a large increase in TCR affinity and accounting for the efficacy of the modified self-TAA as a vaccine. These results show that carefully selected, well-characterized modifications to a poorly immunogenic self-TAA can rescue the immune response of the large repertoire of weakly responding natural self-TAA-specific CD8 T cells, driving them to proliferate and differentiate into functional effectors. Subsequently, the unmodified self-TAA on the tumor cells, while unable to drive this response, is nevertheless a sufficient target for the CD8 cytotoxic effectors. Our results suggest a pathway for more efficiently identifying variants of common self-TAAs, which could be useful in vaccine development, complementing other current nonantigen-specific immunotherapies.


Subject(s)
Antigens, Neoplasm/immunology , Autoantigens/immunology , CD8-Positive T-Lymphocytes/immunology , Neoplasms, Experimental/immunology , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Cancer Vaccines/immunology , Cell Line, Tumor , Female , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/prevention & control , Sf9 Cells , Spodoptera
4.
Int J Mol Sci ; 23(3)2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35163755

ABSTRACT

Cytotoxic T lymphocytes, differentiated CD8+ T cells, use multiple mechanisms to mediate their function, including release of granules containing perforin and granzymes at target cells. Granzymes are a family of cytotoxic proteases that each act on unique sets of biological substrates within target cells, usually to induce cell death. Granzymes are differentially expressed within T cells, depending on their environment and activation state, making the granzyme cytotoxic pathway dynamic and responsive to individual circumstances. In this review, we describe what is currently known about granzyme structure, processing, and granzyme-induced cell death in the context of cancer and in some other inflammatory diseases.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Granzymes/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Animals , Gene Expression Regulation , Humans
5.
Mol Carcinog ; 59(7): 862-870, 2020 07.
Article in English | MEDLINE | ID: mdl-32386086

ABSTRACT

The strength of the interaction between T-cell receptors (TCRs) and their ligands, peptide/major histocompatibility complex complexes (pMHCs), is one of the most frequently discussed and investigated features of T cells in immuno-oncology today. Although there are many molecules on the surface of T cells that interact with ligands on other cells, the TCR/pMHC is the only receptor-ligand pair that offers antigen specificity and dictates the functional response of the T cell. The strength of the TCR/pMHC interaction, along with the environment in which this interaction takes place, is key to how the T cell will respond. The TCR repertoire of T cells that interact with tumor-associated antigens is vast, although typically of low affinity. Here, we focus on the low-affinity interactions between TCRs from CD8+ T cells and different models used in immuno-oncology.


Subject(s)
Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens/immunology , Humans , Immunotherapy/methods
6.
J Immunol ; 199(7): 2279-2290, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28827283

ABSTRACT

Sarcoidosis is a granulomatous disease that primarily affects the lungs and is characterized by an accumulation of CD4+ T cells in the bronchoalveolar lavage (BAL). Previous work has indicated that HLA-DRB1*03:01+ (DR3+) patients diagnosed with the acute form of the disease, Löfgren's syndrome (LS), have an accumulation of CD4+ T cells bearing TCRs using TRAV12-1 (formerly AV2S3). However, the importance of these α-chains in disease pathogenesis and the paired TCRß-chain remains unknown. This study aimed to identify expanded αßTCR pairs expressed on CD4+ T cells derived from the BAL of DR3+ LS patients. Using a deep-sequencing approach, we determined TCRα- and TCRß-chain usage, as well as αßTCR pairs expressed on BAL CD4+ T cells from LS patients. TRAV12-1 and TRBV2 (formerly BV22) were the most expanded V region gene segments in DR3+ LS patients relative to control subjects, and TRAV12-1 and TRBV2 CDR3 motifs were shared among multiple DR3+ LS patients. When assessing αßTCR pairing, TRAV12-1 preferentially paired with TRBV2, and these TRAV12-1/TRBV2 TCRs displayed CDR3 homology. These findings suggest that public CD4+ TCR repertoires exist among LS patients and that these T cells are recognizing the putative sarcoidosis-associated Ag(s) in the context of DR3.


Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Lung/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Sarcoidosis, Pulmonary/immunology , Acute Disease , Adult , Aged , Bronchoalveolar Lavage Fluid/immunology , CD4-Positive T-Lymphocytes/immunology , Female , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Tumor Necrosis Factor, Member 25/genetics , Receptors, Tumor Necrosis Factor, Member 25/immunology
7.
Proc Natl Acad Sci U S A ; 113(29): 8272-7, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27307436

ABSTRACT

Infiltration of T cells in breast tumors correlates with improved survival of patients with breast cancer, despite relatively few mutations in these tumors. To determine if T-cell specificity can be harnessed to augment immunotherapies of breast cancer, we sought to identify the alpha-beta paired T-cell receptors (TCRs) of tumor-infiltrating lymphocytes shared between multiple patients. Because TCRs function as heterodimeric proteins, we used an emulsion-based RT-PCR assay to link and amplify TCR pairs. Using this assay on engineered T-cell hybridomas, we observed ∼85% accurate pairing fidelity, although TCR recovery frequency varied. When we applied this technique to patient samples, we found that for any given TCR pair, the dominant alpha- or beta-binding partner comprised ∼90% of the total binding partners. Analysis of TCR sequences from primary tumors showed about fourfold more overlap in tumor-involved relative to tumor-free sentinel lymph nodes. Additionally, comparison of sequences from both tumors of a patient with bilateral breast cancer showed 10% overlap. Finally, we identified a panel of unique TCRs shared between patients' tumors and peripheral blood that were not found in the peripheral blood of controls. These TCRs encoded a range of V, J, and complementarity determining region 3 (CDR3) sequences on the alpha-chain, and displayed restricted V-beta use. The nucleotides encoding these shared TCR CDR3s varied, suggesting immune selection of this response. Harnessing these T cells may provide practical strategies to improve the shared antigen-specific response to breast cancer.


Subject(s)
Breast Neoplasms/genetics , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/metabolism , Base Sequence , Cell Line , Emulsions , Female , Humans , Polymerase Chain Reaction/methods
8.
J Immunol ; 197(4): 1477-88, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27371726

ABSTRACT

Mechanisms of self-tolerance often result in CD8(+) tumor-infiltrating lymphocytes (TIL) with a hypofunctional phenotype incapable of tumor clearance. Using a transplantable colon carcinoma model, we found that CD8(+) T cells became tolerized in <24 h in an established tumor environment. To define the collective impact of pathways suppressing TIL function, we compared genome-wide mRNA expression of tumor-specific CD8(+) T cells from the tumor and periphery. Notably, gene expression induced during TIL hypofunction more closely resembled self-tolerance than viral exhaustion. Differential gene expression was refined to identify a core set of genes that defined hypofunctional TIL; these data comprise the first molecular profile of tumor-specific TIL that are naturally responding and represent a polyclonal repertoire. The molecular profile of TIL was further dissected to determine the extent of overlap and distinction between pathways that collectively restrict T cell functions. As suggested by the molecular profile of TIL, protein expression of inhibitory receptor LAG-3 was differentially regulated throughout prolonged late-G1/early-S phase of the cell cycle. Our data may accelerate efficient identification of combination therapies to boost anti-tumor function of TIL specifically against tumor cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms, Experimental/immunology , Tumor Escape/immunology , Animals , Cell Separation , Disease Models, Animal , Female , Flow Cytometry , High-Throughput Nucleotide Sequencing , Mice , Mice, Inbred BALB C , Oligonucleotide Array Sequence Analysis
10.
Am J Respir Crit Care Med ; 193(6): 614-26, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26551758

ABSTRACT

RATIONALE: The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors. OBJECTIVES: Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs. METHODS: We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery. MEASUREMENTS AND MAIN RESULTS: We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood. CONCLUSIONS: Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics.


Subject(s)
Flow Cytometry , Lung/immunology , Lymph Nodes/immunology , Mononuclear Phagocyte System/immunology , Phagocytes/immunology , Adult , Cadaver , Female , Humans , Male
11.
J Biol Chem ; 288(46): 33213-25, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24106273

ABSTRACT

Vaccines that incorporate peptide mimics of tumor antigens, or mimotope vaccines, are commonly used in cancer immunotherapy and function by eliciting increased numbers of T cells that cross-react with the native tumor antigen. Unfortunately, they often elicit T cells that do not cross-react with or that have low affinity for the tumor antigen. Using a high affinity tumor-specific T cell clone, we identified a panel of mimotope vaccines for the dominant peptide antigen from a mouse colon tumor that elicits a range of tumor protection following vaccination. The TCR from this high affinity T cell clone was rarely identified in ex vivo evaluation of tumor-specific T cells elicited by mimotope vaccination. Conversely, a low affinity clone found in the tumor and following immunization was frequently identified. Using peptide libraries, we determined if this frequently identified TCR improved the discovery of efficacious mimotopes. We demonstrated that the representative TCR identified more protective mimotopes than the high affinity TCR. These results suggest that targeting a dominant fraction of tumor-specific T cells generates potent immunity and that consideration of the available T cell repertoire is necessary for targeted T cell therapy. These results have important implications when optimizing mimotope vaccines for cancer immunotherapy.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Immunotherapy , Neoplasm Proteins/immunology , Neoplasms/therapy , Peptide Library , Receptors, Antigen, T-Cell/immunology , Animals , Cancer Vaccines/pharmacology , Mice , Mice, Inbred BALB C , Neoplasms/immunology
12.
J Immunol ; 187(9): 4431-9, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21940675

ABSTRACT

Variant peptide vaccines are used clinically to expand T cells that cross-react with tumor-associated Ags (TAA). To investigate the effects of elevated endogenous TAA expression on variant peptide-induced responses, we used the GP70 TAA model. Although young BALB/c mice display T cell tolerance to the TAA GP70(423-431) (AH1), expression of GP70 and suppression of AH1-specific responses increases with age. We hypothesized that as TAA expression increases, the AH1 cross-reactivity of variant peptide-elicited T cell responses diminishes. Controlling for immunosenescence, we showed that elevated GP70 expression suppressed AH1 cross-reactive responses elicited by two AH1 peptide variants. A variant that elicited almost exclusively AH1 cross-reactive T cells in young mice elicited few or no T cells in aging mice with Ab-detectable GP70 expression. In contrast, a variant that elicited a less AH1 cross-reactive T cell response in young mice successfully expanded AH1 cross-reactive T cells in all aging mice tested. However, these T cells bound the AH1/MHC complex with a relatively short half-life and responded poorly to ex vivo stimulation with the AH1 peptide. Variant peptide vaccine responses were also suppressed when AH1 peptide is administered tolerogenically to young mice before vaccination. Analyses of variant-specific precursor T cells from naive mice with Ab-detectable GP70 expression determined that these T cells expressed PD-1 and had downregulated IL-7Rα expression, suggesting they were anergic or undergoing deletion. Although variant peptide vaccines were less effective as TAA expression increases, data presented in this article also suggest that complementary immunotherapies may induce the expansion of T cells with functional TAA recognition.


Subject(s)
Antigenic Variation/immunology , Cancer Vaccines/immunology , Gene Expression Regulation, Neoplastic/immunology , Moloney murine leukemia virus/immunology , Up-Regulation/immunology , Vaccines, Subunit/immunology , Viral Envelope Proteins/biosynthesis , Aging/immunology , Animals , Cancer Vaccines/antagonists & inhibitors , Cells, Cultured , Down-Regulation/immunology , Epitopes, T-Lymphocyte/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Up-Regulation/genetics , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/antagonists & inhibitors , Viral Envelope Proteins/deficiency , Viral Envelope Proteins/genetics
13.
Proc Natl Acad Sci U S A ; 107(10): 4652-7, 2010 Mar 09.
Article in English | MEDLINE | ID: mdl-20133772

ABSTRACT

Peptide vaccines enhance the response of T cells toward tumor antigens and represent a strategy to augment antigen-independent immunotherapies of cancer. However, peptide vaccines that include native tumor antigens rarely prevent tumor growth. We have assembled a set of peptide variants for a mouse-colon tumor model to determine how to improve T-cell responses. These peptides have similar affinity for MHC molecules, but differ in the affinity of the peptide-MHC/T-cell receptor interaction with a tumor-specific T-cell clone. We systematically demonstrated that effective antitumor responses are generated after vaccination with variant peptides that stimulate the largest proportion of endogenous T cells specific for the native tumor antigen. Importantly, we found some variant peptides that strongly stimulated a specific T-cell clone in vitro, but elicited fewer tumor-specific T cells in vivo, and were not protective. The T cells expanded by the effective vaccines responded to the wild-type antigen by making cytokines and killing target cells, whereas most of the T cells expanded by the ineffective vaccines only responded to the peptide variants. We conclude that peptide-variant vaccines are most effective when the peptides react with a large responsive part of the tumor-specific T-cell repertoire.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Colorectal Neoplasms/immunology , T-Lymphocytes/immunology , Vaccines, Subunit/immunology , Animals , Cancer Vaccines/administration & dosage , Cancer Vaccines/genetics , Cell Line , Cell Line, Tumor , Colorectal Neoplasms/pathology , Colorectal Neoplasms/prevention & control , Cytotoxicity, Immunologic/immunology , Female , Histocompatibility Antigens Class I/immunology , Immunodominant Epitopes/immunology , Interferon-gamma/metabolism , Mice , Mice, Inbred BALB C , Mice, Transgenic , Peptide Library , Receptors, Antigen, T-Cell/immunology , Spodoptera , T-Lymphocytes/metabolism , Vaccination , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics
14.
Cancer Immunol Res ; 11(5): 570-582, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36787375

ABSTRACT

T-cell receptor (TCR) binding strength to peptide-MHC antigen complex influences numerous T-cell functions. However, the vast diversity of a polyclonal T-cell repertoire for even a single antigen greatly increases the complexity of studying the impact of TCR affinity on T-cell function. Here, we determined how TCR binding strength affected the protein and transcriptional profile of an endogenous, polyclonal T-cell response to a known tumor-associated antigen (TAA) within the tumor microenvironment (TME). We confirmed that the staining intensity by flow cytometry and the counts by sequencing from MHC-tetramer labeling were reliable surrogates for the TCR-peptide-MHC steady-state binding affinity. We further demonstrated by single-cell RNA sequencing that tumor-infiltrating lymphocytes (TIL) with high and low binding affinity for a TAA can differentiate into cells with many antigen-specific transcriptional profiles within an established TME. However, more progenitor-like phenotypes were significantly biased towards lower affinity T cells, and proliferating phenotypes showed significant bias towards high-affinity TILs. In addition, we found that higher affinity T cells advanced more rapidly to terminal phases of T-cell exhaustion and exhibited better tumor control. We confirmed the polyclonal TIL results using a TCR transgenic mouse possessing a single low-affinity TCR targeting the same TAA. These T cells maintained a progenitor-exhausted phenotype and exhibited impaired tumor control. We propose that high-affinity TCR interactions drive T-cell fate decisions more rapidly than low-affinity interactions and that these cells differentiate faster. These findings illustrate divergent forms of T-cell dysfunction based on TCR affinity which may impact TIL therapies and antitumor responses.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Neoplasms , Mice , Animals , Receptors, Antigen, T-Cell , T-Lymphocytes , Neoplasms/metabolism , Antigens, Neoplasm/metabolism , Mice, Transgenic , CD8-Positive T-Lymphocytes , Peptides/metabolism , Tumor Microenvironment
15.
Cancer Immunol Immunother ; 61(10): 1627-38, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22350070

ABSTRACT

A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3ß motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates.


Subject(s)
Cancer Vaccines/immunology , Complementarity Determining Regions/immunology , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/immunology , Colonic Neoplasms/immunology , Female , Mice , Mice, Inbred BALB C , Receptors, Antigen, T-Cell/immunology , Vaccines, Subunit/immunology
16.
Front Immunol ; 13: 847092, 2022.
Article in English | MEDLINE | ID: mdl-35967379

ABSTRACT

Certain CD8 T cell responses are particularly effective at controlling infection, as exemplified by elite control of HIV in individuals harboring HLA-B57. To understand the structural features that contribute to CD8 T cell elite control, we focused on a strongly protective CD8 T cell response directed against a parasite-derived peptide (HF10) presented by an atypical MHC-I molecule, H-2Ld. This response exhibits a focused TCR repertoire dominated by Vß2, and a representative TCR (TG6) in complex with Ld-HF10 reveals an unusual structure in which both MHC and TCR contribute extensively to peptide specificity, along with a parallel footprint of TCR on its pMHC ligand. The parallel footprint is a common feature of Vß2-containing TCRs and correlates with an unusual Vα-Vß interface, CDR loop conformations, and Vß2-specific germline contacts with peptides. Vß2 and Ld may represent "specialist" components for antigen recognition that allows for particularly strong and focused T cell responses.


Subject(s)
CD8-Positive T-Lymphocytes , Peptides , Receptors, Antigen, T-Cell, alpha-beta , Receptors, Antigen, T-Cell , CD8-Positive T-Lymphocytes/immunology , Germ Cells/immunology , Histocompatibility Antigen H-2D/immunology , Molecular Conformation , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Transglutaminases/immunology
17.
Cancers (Basel) ; 14(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36139558

ABSTRACT

Antigenic differences formed by alterations in gene expression and alternative splicing are predicted in breast cancer cells undergoing epithelial to mesenchymal transition (EMT) and the reverse plasticity known as MET. How these antigenic differences impact immune interactions and the degree to which they can be exploited to enhance immune responses against mesenchymal cells is not fully understood. We utilized a master microRNA regulator of EMT to alter mesenchymal-like EO771 mammary carcinoma cells to a more epithelial phenotype. A computational approach was used to identify neoantigens derived from the resultant differentially expressed somatic variants (SNV) and alternative splicing events (neojunctions). Using whole cell vaccines and peptide-based vaccines, we find superior cytotoxicity against the more-epithelial cells and explore the potential of neojunction-derived antigens to elicit T cell responses through experiments designed to validate the computationally predicted neoantigens. Overall, results identify EMT-associated splicing factors common to both mouse and human breast cancer cells as well as immunogenic SNV- and neojunction-derived neoantigens in mammary carcinoma cells.

18.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34681217

ABSTRACT

Many immunotherapies rely on CD8+ effector T cells to recognize and kill cognate tumor cells. These T cell-based immunotherapies include adoptive cell therapy, such as CAR T cells or transgenic TCR T cells, and anti-cancer vaccines which expand endogenous T cell populations. Tumor mutation burden and the choice of antigen are among the most important aspects of T cell-based immunotherapies. Here, we highlight various classes of cancer antigens, including self, neojunction-derived, human endogenous retrovirus (HERV)-derived, and somatic nucleotide variant (SNV)-derived antigens, and consider their utility in T cell-based immunotherapies. We further discuss the respective anti-tumor/anti-self-properties that influence both the degree of immunotolerance and potential off-target effects associated with each antigen class.

19.
NPJ Breast Cancer ; 7(1): 64, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34045467

ABSTRACT

Many immune suppressive mechanisms utilized by triple negative breast cancer (TNBC) are regulated by oncogenic epithelial-to-mesenchymal transition (EMT). How TNBC EMT impacts innate immune cells is not fully understood. To determine how TNBC suppresses antitumor macrophages, we used microRNA-200c (miR-200c), a powerful repressor of EMT, to drive mesenchymal-like mouse mammary carcinoma and human TNBC cells toward a more epithelial state. MiR-200c restoration significantly decreased growth of mouse mammary carcinoma Met-1 cells in culture and in vivo. Cytokine profiling of Met-1 and human BT549 cells revealed that miR-200c upregulated cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), promoted M1 antitumor macrophage polarization. Cytokines upregulated by miR-200c correlated with an epithelial gene signature and M1 macrophage polarization in BC patients and predicted a more favorable overall survival for TNBC patients. Our findings demonstrate that immunogenic cytokines (e.g., GM-CSF) are suppressed in aggressive TNBC, warranting further investigation of cytokine-based therapies to limit disease recurrence.

20.
Front Immunol ; 12: 607282, 2021.
Article in English | MEDLINE | ID: mdl-33854497

ABSTRACT

Over the past decade, immunotherapies have revolutionized the treatment of cancer. Although the success of immunotherapy is remarkable, it is still limited to a subset of patients. More than 1500 clinical trials are currently ongoing with a goal of improving the efficacy of immunotherapy through co-administration of other agents. Preclinical, small-animal models are strongly desired to increase the pace of scientific discovery, while reducing the cost of combination drug testing in humans. Human immune system (HIS) mice are highly immune-deficient mouse recipients rtpeconstituted with human hematopoietic stem cells. These HIS-mice are capable of growing human tumor cell lines and patient-derived tumor xenografts. This model allows rapid testing of multiple, immune-related therapeutics for tumors originating from unique clinical samples. Using a cord blood-derived HIS-BALB/c-Rag2nullIl2rγnullSIRPαNOD (BRGS) mouse model, we summarize our experiments testing immune checkpoint blockade combinations in these mice bearing a variety of human tumors, including breast, colorectal, pancreatic, lung, adrenocortical, melanoma and hematological malignancies. We present in-depth characterization of the kinetics and subsets of the HIS in lymph and non-lymph organs and relate these to protocol development and immune-related treatment responses. Furthermore, we compare the phenotype of the HIS in lymph tissues and tumors. We show that the immunotype and amount of tumor infiltrating leukocytes are widely-variable and that this phenotype is tumor-dependent in the HIS-BRGS model. We further present flow cytometric analyses of immune cell subsets, activation state, cytokine production and inhibitory receptor expression in peripheral lymph organs and tumors. We show that responding tumors bear human infiltrating T cells with a more inflammatory signature compared to non-responding tumors, similar to reports of "responding" patients in human immunotherapy clinical trials. Collectively these data support the use of HIS mice as a preclinical model to test combination immunotherapies for human cancers, if careful attention is taken to both protocol details and data analysis.


Subject(s)
Disease Models, Animal , Heterografts , Immune System , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Animals , Chimerism , Hematopoietic Stem Cell Transplantation , Humans , Immunotherapy/adverse effects , Immunotherapy/methods , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasms/etiology , Phenotype , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL