Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Gastroenterology ; 159(5): 1882-1897.e5, 2020 11.
Article in English | MEDLINE | ID: mdl-32768595

ABSTRACT

BACKGROUND & AIMS: Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, resulting in the up-regulation of hypoxia inducible factor 1 alpha (HIF1A), which promotes the survival of cells under low-oxygen conditions. We studied the roles of HIF1A in the development of pancreatic tumors in mice. METHODS: We performed studies with KrasLSL-G12D/+;Trp53LSL-R172H/+;Pdx1-Cre (KPC) mice, KPC mice with labeled pancreatic epithelial cells (EKPC), and EKPC mice with pancreas-specific depletion of HIF1A. Pancreatic and other tissues were collected and analyzed by histology and immunohistochemistry. Cancer cells were cultured from PDACs from mice and analyzed in cell migration and invasion assays and by immunoblots, real-time polymerase chain reaction, and liquid chromatography-mass spectrometry. We performed studies with the human pancreatic cancer cell lines PATU-8988T, BxPC-3, PANC-1, and MiaPACA-2, which have no or low metastatic activity, and PATU-8988S, AsPC-1, SUIT-2 and Capan-1, which have high metastatic activity. Expression of genes was knocked down in primary cancer cells and pancreatic cancer cell lines by using small hairpin RNAs; cells were injected intravenously into immune-competent and NOD/SCID mice, and lung metastases were quantified. We compared levels of messenger RNAs in pancreatic tumors and normal pancreas in The Cancer Genome Atlas. RESULTS: EKPC mice with pancreas-specific deletion of HIF1A developed more advanced pancreatic neoplasias and PDACs with more invasion and metastasis, and had significantly shorter survival times, than EKPC mice. Pancreatic cancer cells from these tumors had higher invasive and metastatic activity in culture than cells from tumors of EKPC mice. HIF1A-knockout pancreatic cancer cells had increased expression of protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B). There was an inverse correlation between levels of HIF1A and PPP1R1B in human PDAC tumors; higher expression of PPP1R1B correlated with shorter survival times of patients. Metastatic human pancreatic cancer cell lines had increased levels of PPP1R1B and lower levels of HIF1A compared with nonmetastatic cancer cell lines; knockdown of PPP1R1B significantly reduced the ability of pancreatic cancer cells to form lung metastases in mice. PPP1R1B promoted degradation of p53 by stabilizing phosphorylation of MDM2 at Ser166. CONCLUSIONS: HIF1A can act a tumor suppressor by preventing the expression of PPP1R1B and subsequent degradation of the p53 protein in pancreatic cancer cells. Loss of HIF1A from pancreatic cancer cells increases their invasive and metastatic activity.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Cell Movement , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung Neoplasms/metabolism , Pancreatic Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/secondary , Cell Line, Tumor , Disease Models, Animal , Dopamine and cAMP-Regulated Phosphoprotein 32/genetics , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/deficiency , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Male , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Neoplasm Invasiveness , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proteolysis , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism , Tumor Hypoxia , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Up-Regulation
2.
Nat Commun ; 12(1): 3862, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162858

ABSTRACT

Memory CD8+ T cells populate non-lymphoid tissues (NLTs) following pathogen infection, but little is known about the establishment of endogenous tumor-specific tissue-resident memory T cells (TRM) during cancer immunotherapy. Using a transplantable mouse model of prostate carcinoma, here we report that tumor challenge leads to expansion of naïve neoantigen-specific CD8+ T cells and formation of a small population of non-recirculating TRM in several NLTs. Primary tumor destruction by irreversible electroporation (IRE), followed by anti-CTLA-4 immune checkpoint inhibitor (ICI), promotes robust expansion of tumor-specific CD8+ T cells in blood, tumor, and NLTs. Parabiosis studies confirm that TRM establishment following dual therapy is associated with tumor remission in a subset of cases and protection from subsequent tumor challenge. Addition of anti-PD-1 following dual IRE + anti-CTLA-4 treatment blocks tumor growth in non-responsive cases. This work indicates that focal tumor destruction using IRE combined with ICI is a potent in situ tumor vaccination strategy that generates protective tumor-specific TRM.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Electroporation/methods , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Prostatic Neoplasms/therapy , Animals , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Models, Animal , Humans , Immunologic Memory/immunology , Kaplan-Meier Estimate , Male , Mice, Inbred C57BL , Mice, Transgenic , Prostatic Neoplasms/immunology , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL