Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Gut ; 69(8): 1472-1482, 2020 08.
Article in English | MEDLINE | ID: mdl-32001555

ABSTRACT

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) still carries a dismal prognosis with an overall 5-year survival rate of 9%. Conventional combination chemotherapies are a clear advance in the treatment of PDAC; however, subtypes of the disease exist, which exhibit extensive resistance to such therapies. Genomic MYC amplifications represent a distinct subset of PDAC with an aggressive tumour biology. It is clear that hyperactivation of MYC generates dependencies that can be exploited therapeutically. The aim of the study was to find and to target MYC-associated dependencies. DESIGN: We analysed human PDAC gene expression datasets. Results were corroborated by the analysis of the small ubiquitin-like modifier (SUMO) pathway in a large PDAC cohort using immunohistochemistry. A SUMO inhibitor was used and characterised using human and murine two-dimensional, organoid and in vivo models of PDAC. RESULTS: We observed that MYC is connected to the SUMOylation machinery in PDAC. Components of the SUMO pathway characterise a PDAC subtype with a dismal prognosis and we provide evidence that hyperactivation of MYC is connected to an increased sensitivity to pharmacological SUMO inhibition. CONCLUSION: SUMO inhibitor-based therapies should be further developed for an aggressive PDAC subtype.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Aged , Animals , Apoptosis , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Cell Proliferation , Enzyme Inhibitors/pharmacology , Esters/pharmacology , Female , Gene Amplification , Gene Expression , Humans , Male , Mice , Middle Aged , Neoplasm Transplantation , Organoids/metabolism , Pancreatic Neoplasms/drug therapy , Prognosis , Proto-Oncogene Proteins c-myc/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , Sulfonic Acids , Sumoylation/drug effects , Sumoylation/genetics , Transcriptome/drug effects , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitins/genetics , Ubiquitins/metabolism
2.
J Enzyme Inhib Med Chem ; 33(1): 74-84, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29115879

ABSTRACT

Simultaneous inhibition of multiple kinases has been suggested to provide synergistic effects on inhibition of tumour growth and resistance. This study describes the design, synthesis and evaluation of 18 compounds incorporating a pyrrolo[2,3-d]pyrimidine scaffold for dual inhibition of epidermal growth factor receptor kinase (EGFR) and aurora kinase A (AURKA). Compounds 1-18 of this study demonstrate nanomolar inhibition of EGFR and micromolar inhibition of AURKA. Compounds 1-18 allow for a structure-activity relationships (SAR) analysis of the 4-anilino moiety for dual EGFR and AURKA inhibition. Compound 6, a 4-methoxyphenylpyrrolo[2,3-d]pyrimidin-4-amine, demonstrates single-digit micromolar inhibition of both AURKA and EGFR and provides evidence of a single molecule with dual activity against EGFR and AURKA. Compound 2, the most potent inhibitor of EGFR and AURKA from this series, has been further evaluated in four different squamous cell head and neck cancer cell lines for downstream effects resulting from AURKA and EGFR inhibition.


Subject(s)
Aurora Kinase A/antagonists & inhibitors , Drug Design , ErbB Receptors/antagonists & inhibitors , Models, Molecular , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Aurora Kinase A/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/metabolism , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
3.
Haematologica ; 101(8): 932-40, 2016 08.
Article in English | MEDLINE | ID: mdl-27175029

ABSTRACT

Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [(68)Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche.


Subject(s)
Coordination Complexes , Gene Expression , Leukemia, Myeloid, Acute/diagnostic imaging , Leukemia, Myeloid, Acute/genetics , Molecular Imaging , Peptides, Cyclic , Positron-Emission Tomography , Receptors, CXCR4/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Knockout Techniques , Gene Targeting , Humans , Leukemia, Myeloid, Acute/pathology , Magnetic Resonance Imaging/methods , Molecular Imaging/methods , Positron-Emission Tomography/methods , Receptors, CXCR4/metabolism , Xenograft Model Antitumor Assays
4.
Hippocampus ; 24(6): 712-23, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24550127

ABSTRACT

In species ranging from flies to mammals, parameters of memory processing, like acquisition, consolidation, and retrieval are clearly molded by time of day. However, mechanisms that regulate and adapt these temporal differences are elusive, with an involvement of clock genes and their protein products suggestive. Therefore, we analyzed initially in mouse hippocampus the daytime-dependent dynamics of parameters, known to be important for proper memory formation, like phosphorylation of the "memory molecule" cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB) and chromatin remodeling. Next, in an effort to characterize the mechanistic role of clock genes within hippocampal molecular dynamics, we compared the results obtained from wildtype (WT) -mice and mice deficient for the archetypical clock gene Period1 (Per1(-/-) -mice). We detected that the circadian rhythm of CREB phosphorylation in the hippocampus of WT mice disappeared completely in mice lacking Per1. Furthermore, we found that the here for the first time described profound endogenous day/night rhythms in histone modifications in the hippocampus of WT-mice are markedly perturbed in Per1(-/-) -mice. Concomitantly, both, in vivo recorded LTP, a cellular correlate for long-term memory, and hippocampal gene expression were significantly altered in the absence of Per1. Notably, these molecular perturbations in Per1(-/-) -mice were accompanied by the loss of daytime-dependent differences in spatial working memory performance. Our data provide a molecular blueprint for a novel role of PER1 in temporally shaping the daytime-dependency of memory performance, likely, by gating CREB signaling, and by coupling to downstream chromatin remodeling.


Subject(s)
Circadian Rhythm/physiology , Hippocampus/physiology , Long-Term Potentiation/physiology , Memory, Short-Term/physiology , Period Circadian Proteins/metabolism , Spatial Memory/physiology , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Electrodes, Implanted , Epigenesis, Genetic/physiology , Gene Expression/physiology , Histones/metabolism , Immunohistochemistry , Male , Memory, Long-Term/physiology , Mice, Knockout , Microarray Analysis , Period Circadian Proteins/genetics , Phosphorylation , Photoperiod , Tissue Culture Techniques
5.
Blood Adv ; 6(2): 515-520, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34768284

ABSTRACT

Biomarkers that predict response to lenalidomide maintenance therapy in patients with multiple myeloma (MM) have remained elusive. We have shown that immunomodulatory drugs (IMiDs) exert anti-MM activity via destabilization of MCT1 and CD147. In this study, cell samples of 654 patients with MM who received lenalidomide (n = 455), thalidomide (n = 98), or bortezomib (n = 101) maintenance were assessed by gene expression profiling and RNA sequencing, followed by correlation of MCT1 and CD147 expression with data for progression-free survival (PFS) and overall survival (OS). Patients with high expression levels of MCT1 showed significantly reduced PFS (31.9 months vs 48.2 months in MCT1high vs MCT1low; P = .03) and OS (75.9 months vs not reached [NR] in MCT1high vs MCT1low; P = .001) in cases with lenalidomide maintenance, whereas MCT1 expression had no significant impact on PFS or OS in cases with bortezomib maintenance. We validated the predictive role of MCT1 for IMiD-based maintenance in an independent cohort of patients who received thalidomide (OS, 83.6 months vs NR in MCT1high vs MCT1low; P = .03). Functional validation showed that MCT1 overexpression in human MM cell lines significantly reduced the efficacy of lenalidomide, whereas no change was observed with bortezomib treatment, either in vitro or in a MM xenograft model. Our findings have established MCT1 expression as a predictive marker for response to lenalidomide-based maintenance in patients with MM.


Subject(s)
Multiple Myeloma , Biomarkers , Bortezomib/pharmacology , Bortezomib/therapeutic use , Humans , Lenalidomide/therapeutic use , Multiple Myeloma/therapy , Thalidomide/pharmacology , Thalidomide/therapeutic use
6.
Nat Commun ; 13(1): 281, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022408

ABSTRACT

SUMOylation is a post-translational modification of proteins that regulates these proteins' localization, turnover or function. Aberrant SUMOylation is frequently found in cancers but its origin remains elusive. Using a genome-wide transposon mutagenesis screen in a MYC-driven B-cell lymphoma model, we here identify the SUMO isopeptidase (or deconjugase) SENP6 as a tumor suppressor that links unrestricted SUMOylation to tumor development and progression. Notably, SENP6 is recurrently deleted in human lymphomas and SENP6 deficiency results in unrestricted SUMOylation. Mechanistically, SENP6 loss triggers release of DNA repair- and genome maintenance-associated protein complexes from chromatin thereby impairing DNA repair in response to DNA damages and ultimately promoting genomic instability. In line with this hypothesis, SENP6 deficiency drives synthetic lethality to Poly-ADP-Ribose-Polymerase (PARP) inhibition. Together, our results link SENP6 loss to defective genome maintenance and reveal the potential therapeutic application of PARP inhibitors in B-cell lymphoma.


Subject(s)
Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Mutation , Sumoylation/physiology , Animals , Biomarkers, Tumor , Carbon-Nitrogen Lyases/genetics , Carbon-Nitrogen Lyases/metabolism , Chromatin , DNA Damage/drug effects , DNA Repair/drug effects , Female , Genomic Instability , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Protein Processing, Post-Translational , Sumoylation/drug effects , Sumoylation/genetics , Synthetic Lethal Mutations , Xenograft Model Antitumor Assays
7.
Oncotarget ; 8(45): 78917-78929, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-29108275

ABSTRACT

Aberrant B-cell receptor (BCR) signaling is known to contribute to malignant transformation. Two small molecule inhibitors targeting BCR pathway signaling include ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, and idelalisib, a specific Phosphatidylinositol-4,5-bisphosphate 3-kinase delta (PI3Kδ) inhibitor, both of which have been approved for use in haematological malignancies. Despite the identification of various diffuse large B-cell lymphoma (DLBCL) subtypes, mutation status alone is not sufficient to predict patient response and therapeutic resistance can arise. Herein we apply early molecular imaging across alternative activated B-cell (ABC) and germinal center B-cell (GCB) DLBCL subtypes to investigate the effects of BCR pathway inhibition. Treatment with both inhibitors adversely affected cell growth and viability. These effects were partially predictable based upon mutation status. Accordingly, very early 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (18F-FDG-PET) and 3'-deoxy-3'[18F]-fluorothymidine positron emission tomography (18F-FLT-PET) reported tumour regression and reductions in tumour metabolism and proliferation upon treatment. Furthermore, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) identified alterations in the proteome of a model of ABC DLBCL upon treatment with ibrutinib or idelalisib. In conclusion we demonstrate that very early molecular imaging adds predictive value in addition to mutational status of DLBCL that may be useful in directing patient therapy.

8.
Nat Med ; 22(7): 735-43, 2016 07.
Article in English | MEDLINE | ID: mdl-27294876

ABSTRACT

Immunomodulatory drugs (IMiDs), such as thalidomide and its derivatives lenalidomide and pomalidomide, are key treatment modalities for hematologic malignancies, particularly multiple myeloma (MM) and del(5q) myelodysplastic syndrome (MDS). Cereblon (CRBN), a substrate receptor of the CRL4 ubiquitin ligase complex, is the primary target by which IMiDs mediate anticancer and teratogenic effects. Here we identify a ubiquitin-independent physiological chaperone-like function of CRBN that promotes maturation of the basigin (BSG; also known as CD147) and solute carrier family 16 member 1 (SLC16A1; also known as MCT1) proteins. This process allows for the formation and activation of the CD147-MCT1 transmembrane complex, which promotes various biological functions, including angiogenesis, proliferation, invasion and lactate export. We found that IMiDs outcompete CRBN for binding to CD147 and MCT1, leading to destabilization of the CD147-MCT1 complex. Accordingly, IMiD-sensitive MM cells lose CD147 and MCT1 expression after being exposed to IMiDs, whereas IMiD-resistant cells retain their expression. Furthermore, del(5q) MDS cells have elevated CD147 expression, which is attenuated after IMiD treatment. Finally, we show that BSG (CD147) knockdown phenocopies the teratogenic effects of thalidomide exposure in zebrafish. These findings provide a common mechanistic framework to explain both the teratogenic and pleiotropic antitumor effects of IMiDs.


Subject(s)
Basigin/drug effects , Cell Cycle Proteins/drug effects , Immunologic Factors/pharmacology , Immunosuppressive Agents/pharmacology , Oncogene Proteins/drug effects , Peptide Hydrolases/drug effects , RNA, Messenger/drug effects , Teratogenesis/drug effects , Thalidomide/pharmacology , Adaptor Proteins, Signal Transducing , Basigin/genetics , Basigin/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Humans , Lenalidomide , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Teratogenesis/genetics , Thalidomide/analogs & derivatives , Ubiquitin-Protein Ligases
9.
EMBO Mol Med ; 8(8): 851-62, 2016 08.
Article in English | MEDLINE | ID: mdl-27317434

ABSTRACT

The mitotic spindle assembly checkpoint (SAC) maintains genome stability and marks an important target for antineoplastic therapies. However, it has remained unclear how cells execute cell fate decisions under conditions of SAC-induced mitotic arrest. Here, we identify USP9X as the mitotic deubiquitinase of the X-linked inhibitor of apoptosis protein (XIAP) and demonstrate that deubiquitylation and stabilization of XIAP by USP9X lead to increased resistance toward mitotic spindle poisons. We find that primary human aggressive B-cell lymphoma samples exhibit high USP9X expression that correlate with XIAP overexpression. We show that high USP9X/XIAP expression is associated with shorter event-free survival in patients treated with spindle poison-containing chemotherapy. Accordingly, aggressive B-cell lymphoma lines with USP9X and associated XIAP overexpression exhibit increased chemoresistance, reversed by specific inhibition of either USP9X or XIAP. Moreover, knockdown of USP9X or XIAP significantly delays lymphoma development and increases sensitivity to spindle poisons in a murine Eµ-Myc lymphoma model. Together, we specify the USP9X-XIAP axis as a regulator of the mitotic cell fate decision and propose that USP9X and XIAP are potential prognostic biomarkers and therapeutic targets in aggressive B-cell lymphoma.


Subject(s)
Antineoplastic Agents/pharmacology , B-Lymphocytes/drug effects , Cell Death , Drug Resistance , Lymphoma, B-Cell/pathology , Ubiquitin Thiolesterase/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , Animals , B-Lymphocytes/physiology , Cells, Cultured , Disease Models, Animal , Humans , Mice , Mitosis , Protein Processing, Post-Translational , Ubiquitin/metabolism
10.
Onco Targets Ther ; 7: 789-98, 2014.
Article in English | MEDLINE | ID: mdl-24920919

ABSTRACT

BACKGROUND: Dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibition offers an attractive therapeutic strategy in anaplastic large cell lymphoma depending on oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) signaling. We tested the efficacy of a novel dual PI3K/mTOR inhibitor, NVP-BGT226 (BGT226), in two anaplastic large cell lymphoma cell lines in vitro and in vivo and performed an early response evaluation with positron emission tomography (PET) imaging using the standard tracer, 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) and the thymidine analog, 3'-deoxy-3'-[(18)F] fluorothymidine (FLT). METHODS: The biological effects of BGT226 were determined in vitro in the NPM-ALK positive cell lines SU-DHL-1 and Karpas299 by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, propidium iodide staining, and biochemical analysis of PI3K and mTOR downstream signaling. FDG-PET and FLT-PET were performed in immunodeficient mice bearing either SU-DHL-1 or Karpas299 xenografts at baseline and 7 days after initiation of treatment with BGT226. Lymphomas were removed for immunohistochemical analysis of proliferation and apoptosis to correlate PET findings with in vivo treatment effects. RESULTS: SU-DHL-1 cells showed sensitivity to BGT226 in vitro, with cell cycle arrest in G0/G1 phase and an IC50 in the low nanomolar range, in contrast with Karpas299 cells, which were mainly resistant to BGT226. In vivo, both FDG-PET and FLT-PET discriminated sensitive from resistant lymphoma, as indicated by a significant reduction of tumor-to-background ratios on day 7 in treated SU-DHL-1 lymphoma-bearing animals compared with the control group, but not in animals with Karpas299 xenografts. Imaging results correlated with a marked decrease in the proliferation marker Ki67, and a slight increase in the apoptotic marker, cleaved caspase 3, as revealed by immunostaining of explanted lymphoma tissue. CONCLUSION: Dual PI3K/mTOR inhibition using BGT226 is effective in ALK-positive anaplastic large cell lymphoma and can be monitored with both FDG-PET and FLT-PET early on in the course of therapy.

11.
Nat Med ; 20(12): 1401-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25419709

ABSTRACT

We searched for genetic alterations in human B cell lymphoma that affect the ubiquitin-proteasome system. This approach identified FBXO25 within a minimal common region of frequent deletion in mantle cell lymphoma (MCL). FBXO25 encodes an orphan F-box protein that determines the substrate specificity of the SCF (SKP1-CUL1-F-box)(FBXO25) ubiquitin ligase complex. An unbiased screen uncovered the prosurvival protein HCLS1-associated protein X-1 (HAX-1) as the bona fide substrate of FBXO25 that is targeted after apoptotic stresses. Protein kinase Cδ (PRKCD) initiates this process by phosphorylating FBXO25 and HAX-1, thereby spatially directing nuclear FBXO25 to mitochondrial HAX-1. Our analyses in primary human MCL identify monoallelic loss of FBXO25 and stabilizing HAX1 phosphodegron mutations. Accordingly, FBXO25 re-expression in FBXO25-deleted MCL cells promotes cell death, whereas expression of the HAX-1 phosphodegron mutant inhibits apoptosis. In addition, knockdown of FBXO25 significantly accelerated lymphoma development in Eµ-Myc mice and in a human MCL xenotransplant model. Together we identify a PRKCD-dependent proapoptotic mechanism controlling HAX-1 stability, and we propose that FBXO25 functions as a haploinsufficient tumor suppressor and that HAX1 is a proto-oncogene in MCL.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis/genetics , F-Box Proteins/genetics , Lymphoma, B-Cell/genetics , Lymphoma, Mantle-Cell/genetics , Nerve Tissue Proteins/genetics , Protein Kinase C-delta/genetics , Proto-Oncogenes/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Animals , Humans , Lymphoma, B-Cell/metabolism , Lymphoma, Mantle-Cell/metabolism , Mice , Proto-Oncogene Mas , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL