Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Annu Rev Immunol ; 32: 489-511, 2014.
Article in English | MEDLINE | ID: mdl-24555473

ABSTRACT

A fundamental property of cells of the innate immune system is their ability to elicit a transcriptional response to a microbial stimulus or danger signal with a high degree of cell type and stimulus specificity. The selective response activates effector pathways to control the insult and plays a central role in regulating adaptive immunity through the differential regulation of cytokine genes. Selectivity is dictated by signaling pathways and their transcription factor targets. However, a growing body of evidence supports models in which different subsets of genes exhibit distinct chromatin features that play active roles in shaping the response. Chromatin also participates in innate memory mechanisms that can promote tolerance to a stimulus or prime cells for a more robust response. These findings have generated interest in the capacity to modulate chromatin regulators with small-molecule compounds for the treatment of diseases associated with innate or adaptive immunity.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Immunity, Innate/physiology , Animals , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunologic Memory/genetics , Immunologic Memory/immunology , Inflammation/genetics , Inflammation/immunology , Inflammation/therapy , Organ Specificity/genetics , Organ Specificity/immunology , Transcription, Genetic
2.
Immunity ; 57(3): 462-477.e9, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38430908

ABSTRACT

Inducible nucleosome remodeling at hundreds of latent enhancers and several promoters shapes the transcriptional response to Toll-like receptor 4 (TLR4) signaling in macrophages. We aimed to define the identities of the transcription factors that promote TLR-induced remodeling. An analysis strategy based on ATAC-seq and single-cell ATAC-seq that enriched for genomic regions most likely to undergo remodeling revealed that the transcription factor nuclear factor κB (NF-κB) bound to all high-confidence peaks marking remodeling during the primary response to the TLR4 ligand, lipid A. Deletion of NF-κB subunits RelA and c-Rel resulted in the loss of remodeling at high-confidence ATAC-seq peaks, and CRISPR-Cas9 mutagenesis of NF-κB-binding motifs impaired remodeling. Remodeling selectivity at defined regions was conferred by collaboration with other inducible factors, including IRF3- and MAP-kinase-induced factors. Thus, NF-κB is unique among TLR4-activated transcription factors in its broad contribution to inducible nucleosome remodeling, alongside its ability to activate poised enhancers and promoters assembled into open chromatin.


Subject(s)
NF-kappa B , Toll-Like Receptor 4 , NF-kappa B/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Nucleosomes , Signal Transduction , Gene Expression Regulation , Transcription Factor RelA/metabolism
3.
Cell ; 172(1-2): 218-233.e17, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29249357

ABSTRACT

Signaling pathways that promote adipose tissue thermogenesis are well characterized, but the limiters of energy expenditure are largely unknown. Here, we show that ablation of the anti-inflammatory cytokine IL-10 improves insulin sensitivity, protects against diet-induced obesity, and elicits the browning of white adipose tissue. Mechanistic studies define bone marrow cells as the source of the IL-10 signal and adipocytes as the target cell type mediating these effects. IL-10 receptor alpha is highly enriched in mature adipocytes and is induced in response to differentiation, obesity, and aging. Assay for transposase-accessible chromatin sequencing (ATAC-seq), ChIP-seq, and RNA-seq reveal that IL-10 represses the transcription of thermogenic genes in adipocytes by altering chromatin accessibility and inhibiting ATF and C/EBPß recruitment to key enhancer regions. These findings expand our understanding of the relationship between inflammatory signaling pathways and adipose tissue function and provide insight into the physiological control of thermogenesis that could inform future therapy.


Subject(s)
Adipocytes/metabolism , Chromatin Assembly and Disassembly , Energy Metabolism , Interleukin-10/metabolism , Thermogenesis , Activating Transcription Factors/metabolism , Animals , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Cells, Cultured , Interleukin-10/genetics , Male , Mice , Mice, Inbred C57BL , Signal Transduction
4.
Nat Immunol ; 21(7): 746-755, 2020 07.
Article in English | MEDLINE | ID: mdl-32514064

ABSTRACT

Plasma membranes of animal cells are enriched for cholesterol. Cholesterol-dependent cytolysins (CDCs) are pore-forming toxins secreted by bacteria that target membrane cholesterol for their effector function. Phagocytes are essential for clearance of CDC-producing bacteria; however, the mechanisms by which these cells evade the deleterious effects of CDCs are largely unknown. Here, we report that interferon (IFN) signals convey resistance to CDC-induced pores on macrophages and neutrophils. We traced IFN-mediated resistance to CDCs to the rapid modulation of a specific pool of cholesterol in the plasma membrane of macrophages without changes to total cholesterol levels. Resistance to CDC-induced pore formation requires the production of the oxysterol 25-hydroxycholesterol (25HC), inhibition of cholesterol synthesis and redistribution of cholesterol to an esterified cholesterol pool. Accordingly, blocking the ability of IFN to reprogram cholesterol metabolism abrogates cellular protection and renders mice more susceptible to CDC-induced tissue damage. These studies illuminate targeted regulation of membrane cholesterol content as a host defense strategy.


Subject(s)
Bacterial Infections/immunology , Bacterial Toxins/immunology , Hydroxycholesterols/metabolism , Interferons/isolation & purification , Phagocytes/immunology , Streptolysins/immunology , Animals , Bacteria/immunology , Bacteria/metabolism , Bacterial Proteins/administration & dosage , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Cell Membrane/metabolism , Cell Membrane Permeability/immunology , Cells, Cultured , Disease Models, Animal , Disease Susceptibility/immunology , Female , Host Microbial Interactions/immunology , Humans , Intravital Microscopy , Male , Mice , Mice, Transgenic , Phagocytes/cytology , Phagocytes/metabolism , Primary Cell Culture , Steroid Hydroxylases/genetics , Steroid Hydroxylases/metabolism , Streptolysins/administration & dosage , Streptolysins/metabolism
5.
Cell ; 170(5): 973-985.e10, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28841420

ABSTRACT

Mycobacterium leprae causes leprosy and is unique among mycobacterial diseases in producing peripheral neuropathy. This debilitating morbidity is attributed to axon demyelination resulting from direct interaction of the M. leprae-specific phenolic glycolipid 1 (PGL-1) with myelinating glia and their subsequent infection. Here, we use transparent zebrafish larvae to visualize the earliest events of M. leprae-induced nerve damage. We find that demyelination and axonal damage are not directly initiated by M. leprae but by infected macrophages that patrol axons; demyelination occurs in areas of intimate contact. PGL-1 confers this neurotoxic response on macrophages: macrophages infected with M. marinum-expressing PGL-1 also damage axons. PGL-1 induces nitric oxide synthase in infected macrophages, and the resultant increase in reactive nitrogen species damages axons by injuring their mitochondria and inducing demyelination. Our findings implicate the response of innate macrophages to M. leprae PGL-1 in initiating nerve damage in leprosy.


Subject(s)
Antigens, Bacterial/metabolism , Disease Models, Animal , Glycolipids/metabolism , Leprosy/microbiology , Leprosy/pathology , Macrophages/immunology , Mycobacterium leprae/physiology , Animals , Axons/metabolism , Axons/pathology , Demyelinating Diseases , Larva/growth & development , Leprosy/immunology , Mycobacterium marinum/metabolism , Myelin Sheath/chemistry , Myelin Sheath/metabolism , Myelin Sheath/ultrastructure , Neuroglia/metabolism , Neuroglia/pathology , Nitric Oxide/metabolism , Zebrafish
6.
Genes Dev ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918046

ABSTRACT

The five NF-κB family members and three nuclear IκB proteins play important biological roles, but the mechanisms by which distinct members of these protein families contribute to selective gene transcription remain poorly understood, especially at a genome-wide scale. Using nascent transcript RNA-seq, we observed considerable overlap between p50-dependent and IκBζ-dependent genes in Toll-like receptor 4 (TLR4)-activated macrophages. Key immunoregulatory genes, including Il6, Il1b, Nos2, Lcn2, and Batf, are among the p50-IκBζ-codependent genes. IκBζ-bound genomic sites are occupied at earlier time points by NF-κB dimers. However, p50-IκBζ codependence does not coincide with preferential binding of either p50 or IκBζ, as RelA co-occupies hundreds of genomic sites with the two proteins. A common feature of p50-IκBζ-codependent genes is a nearby p50/RelA/IκBζ-cobound site exhibiting p50-dependent binding of both RelA and IκBζ. This and other results suggest that IκBζ acts in concert with RelA:p50 heterodimers. Notably, p50-IκBζ-codependent genes comprise a high percentage of genes exhibiting the greatest differential expression between TLR4-stimulated and tumor necrosis factor receptor (TNFR)-stimulated macrophages. Thus, our genome-centric analysis reveals a defined p50-IκBζ pathway that selectively activates a set of key immunoregulatory genes and serves as an important contributor to differential TNFR and TLR4 responses.

7.
Cell ; 165(1): 165-179, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26924576

ABSTRACT

Much has been learned about transcriptional cascades and networks from large-scale systems analyses of high-throughput datasets. However, analysis methods that optimize statistical power through simultaneous evaluation of thousands of ChIP-seq peaks or differentially expressed genes possess substantial limitations in their ability to uncover mechanistic principles of transcriptional control. By examining nascent transcript RNA-seq, ChIP-seq, and binding motif datasets from lipid A-stimulated macrophages with increased attention to the quantitative distribution of signals, we identified unexpected relationships between the in vivo binding properties of inducible transcription factors, motif strength, and transcription. Furthermore, rather than emphasizing common features of large clusters of co-regulated genes, our results highlight the extent to which unique mechanisms regulate individual genes with key biological functions. Our findings demonstrate the mechanistic value of stringent interrogation of well-defined sets of genes as a complement to broader systems analyses of transcriptional cascades and networks.


Subject(s)
Gene Regulatory Networks , Inflammation/genetics , Inflammation/immunology , Animals , Lipid A/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Receptor, Interferon alpha-beta/metabolism , Serum Response Factor/metabolism
8.
Nature ; 627(8004): 628-635, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383790

ABSTRACT

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types1. Loss of IL-10 signalling results in life-threatening inflammatory bowel disease in humans and mice-however, the exact mechanism by which IL-10 signalling subdues inflammation remains unclear2-5. Here we find that increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10 deficiency. Accordingly, genetic deletion of ceramide synthase 2 (encoded by Cers2), the enzyme responsible for VLC ceramide production, limited the exacerbated inflammatory gene expression programme associated with IL-10 deficiency both in vitro and in vivo. The accumulation of saturated VLC ceramides was regulated by a decrease in metabolic flux through the de novo mono-unsaturated fatty acid synthesis pathway. Restoring mono-unsaturated fatty acid availability to cells deficient in IL-10 signalling limited saturated VLC ceramide production and the associated inflammation. Mechanistically, we find that persistent inflammation mediated by VLC ceramides is largely dependent on sustained activity of REL, an immuno-modulatory transcription factor. Together, these data indicate that an IL-10-driven fatty acid desaturation programme rewires VLC ceramide accumulation and aberrant activation of REL. These studies support the idea that fatty acid homeostasis in innate immune cells serves as a key regulatory node to control pathologic inflammation and suggests that 'metabolic correction' of VLC homeostasis could be an important strategy to normalize dysregulated inflammation caused by the absence of IL-10.


Subject(s)
Inflammation , Interleukin-10 , Sphingolipids , Animals , Humans , Mice , Ceramides/chemistry , Ceramides/metabolism , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/metabolism , Homeostasis , Immunity, Innate , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-10/metabolism , Proto-Oncogene Proteins c-rel , Sphingolipids/metabolism
9.
Genes Dev ; 36(19-20): 1079-1095, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36418052

ABSTRACT

Much has been learned about the mechanisms of action of pluripotency factors Oct4 and Sox2. However, as with other regulators of cell identity, little is known about the impact of disrupting their binding motifs in a native environment or the characteristics of genes they regulate. By quantitatively examining dynamic ranges of gene expression instead of focusing on conventional measures of differential expression, we found that Oct4 and Sox2 enhancer binding is strongly enriched near genes subject to large dynamic ranges of expression among cell types, with binding sites near these genes usually within superenhancers. Mutagenesis of representative Oct4:Sox2 motifs near such active, dynamically regulated genes revealed critical roles in transcriptional activation during reprogramming, with more limited roles in transcriptional maintenance in the pluripotent state. Furthermore, representative motifs near silent genes were critical for establishing but not maintaining the fully silent state, while genes whose transcript levels varied by smaller magnitudes among cell types were unaffected by nearby Oct4:Sox2 motifs. These results suggest that Oct4 and Sox2 directly establish both active and silent transcriptional states in pluripotent cells at a large number of genes subject to dynamic regulation during mammalian development, but are less important than expected for maintaining transcriptional states.


Subject(s)
Learning , Mammals , Animals , Transcriptional Activation , Binding Sites , Mutagenesis
10.
Genes Dev ; 36(21-24): 1129-1144, 2022.
Article in English | MEDLINE | ID: mdl-36522129

ABSTRACT

GATA4 is a transcription factor known for its crucial role in the development of many tissues, including the liver; however, its role in adult liver metabolism is unknown. Here, using high-throughput sequencing technologies, we identified GATA4 as a transcriptional regulator of metabolism in the liver. GATA4 expression is elevated in response to refeeding, and its occupancy is increased at enhancers of genes linked to fatty acid and lipoprotein metabolism. Knocking out GATA4 in the adult liver (Gata4LKO) decreased transcriptional activity at GATA4 binding sites, especially during feeding. Gata4LKO mice have reduced plasma HDL cholesterol and increased liver triglyceride levels. The expression of a panel of GATA4 binding genes involved in hepatic cholesterol export and triglyceride hydrolysis was down-regulated in Gata4LKO mice. We further demonstrate that GATA4 collaborates with LXR nuclear receptors in the liver. GATA4 and LXRs share a number of binding sites, and GATA4 was required for the full transcriptional response to LXR activation. Collectively, these results show that hepatic GATA4 contributes to the transcriptional control of hepatic and systemic lipid homeostasis.


Subject(s)
Liver , Orphan Nuclear Receptors , Mice , Animals , Orphan Nuclear Receptors/metabolism , Liver X Receptors/genetics , Liver X Receptors/metabolism , Liver/metabolism , Homeostasis/genetics , Cholesterol , Triglycerides/metabolism , Lipid Metabolism , Mice, Inbred C57BL , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism
11.
Cell ; 151(5): 929-31, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23178114

ABSTRACT

In this issue and in a recent issue of Cell, Vahedi et al. and Samstein et al. provide new insights into the strategies used to establish an enhancer landscape during development of cell lineages. They report that enhancer landscapes characterizing T cell lineages are pre-established and strongly influenced by environmental stimuli.

12.
Cell ; 150(2): 279-90, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22817891

ABSTRACT

Macrophages respond to inflammatory stimuli by modulating the expression of hundreds of genes in a defined temporal cascade, with diverse transcriptional and posttranscriptional mechanisms contributing to the regulatory network. We examined proinflammatory gene regulation in activated macrophages by performing RNA-seq with fractionated chromatin-associated, nucleoplasmic, and cytoplasmic transcripts. This methodological approach allowed us to separate the synthesis of nascent transcripts from transcript processing and the accumulation of mature mRNAs. In addition to documenting the subcellular locations of coding and noncoding transcripts, the results provide a high-resolution view of the relationship between defined promoter and chromatin properties and the temporal regulation of diverse classes of coexpressed genes. The data also reveal a striking accumulation of full-length yet incompletely spliced transcripts in the chromatin fraction, suggesting that splicing often occurs after transcription has been completed, with transcripts retained on the chromatin until fully spliced.


Subject(s)
Chromatin/genetics , Gene Expression Profiling , Inflammation/genetics , Macrophages/metabolism , RNA Splicing , Animals , Gene Expression Regulation , Lipid A/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Receptor, Interferon alpha-beta/genetics , Receptors, Interferon/genetics , Sequence Analysis, RNA , Transcription, Genetic
13.
Genes Dev ; 33(17-18): 1159-1174, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31371436

ABSTRACT

Accessibility of the genomic regulatory information is largely controlled by the nucleosome-organizing activity of transcription factors (TFs). While stimulus-induced TFs bind to genomic regions that are maintained accessible by lineage-determining TFs, they also increase accessibility of thousands of cis-regulatory elements. Nucleosome remodeling events underlying such changes and their interplay with basal positioning are unknown. Here, we devised a novel quantitative framework discriminating different types of nucleosome remodeling events in micrococcal nuclease ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) data sets and used it to analyze nucleosome dynamics at stimulus-regulated cis-regulatory elements. At enhancers, remodeling preferentially affected poorly positioned nucleosomes while sparing well-positioned nucleosomes flanking the enhancer core, indicating that inducible TFs do not suffice to overrule basal nucleosomal organization maintained by lineage-determining TFs. Remodeling events appeared to be combinatorially driven by multiple TFs, with distinct TFs showing, however, different remodeling efficiencies. Overall, these data provide a systematic view of the impact of stimulation on nucleosome organization and genome accessibility in mammalian cells.


Subject(s)
Nucleosomes/metabolism , Regulatory Elements, Transcriptional/physiology , Transcription Factors/metabolism , Animals , Cells, Cultured , Chromatin Immunoprecipitation , High-Throughput Nucleotide Sequencing , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Micrococcal Nuclease/metabolism
14.
Trends Immunol ; 44(4): 248-255, 2023 04.
Article in English | MEDLINE | ID: mdl-36907684

ABSTRACT

Some of the current and former organizers of the Cold Spring Harbor Laboratory (CSHL) 'Gene Expression and Signaling in the Immune System' (GESIS) meeting offer opinions on emerging questions in immunology, discussing the strong value of this recurring scientific meeting in the field.


Subject(s)
Immune System , Signal Transduction , Humans
15.
Immunity ; 47(3): 421-434.e3, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28930658

ABSTRACT

Environmental insults are often detected by multiple sensors that activate diverse signaling pathways and transcriptional regulators, leading to a tailored transcriptional output. To understand how a tailored response is coordinated, we examined the inflammatory response elicited in mouse macrophages by ionizing radiation (IR). RNA-sequencing studies revealed that most radiation-induced genes were strongly dependent on only one of a small number of sensors and signaling pathways, notably the DNA damage-induced kinase ATM, which regulated many IR-response genes, including interferon response genes, via an atypical IRF1-dependent, STING-independent mechanism. Moreover, small, defined sets of genes activated by p53 and NRF2 accounted for the selective response to radiation in comparison to a microbial inducer of inflammation. Our findings reveal that genes comprising an environmental response are activated by defined sensing mechanisms with a high degree of selectivity, and they identify distinct components of the radiation response that might be susceptible to therapeutic perturbation.


Subject(s)
Gene Expression Regulation/radiation effects , Inflammation/genetics , Inflammation/metabolism , Radiation, Ionizing , Signal Transduction , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cluster Analysis , DNA-Activated Protein Kinase/metabolism , Dose-Response Relationship, Radiation , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Knockout Techniques , Humans , Interferons/metabolism , Interferons/pharmacology , Macrophages/metabolism , Macrophages/radiation effects , Membrane Proteins/metabolism , Mice , Myeloid Differentiation Factor 88/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Transcription, Genetic/radiation effects , Transcriptional Activation , Transcriptional Regulator ERG/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Nat Immunol ; 14(10): 1073-83, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24013668

ABSTRACT

C2H2 zinc fingers are found in several key transcriptional regulators in the immune system. However, these proteins usually contain more fingers than are needed for sequence-specific DNA binding, which suggests that different fingers regulate different genes and functions. Here we found that mice lacking finger 1 or finger 4 of Ikaros exhibited distinct subsets of the hematological defects of Ikaros-null mice. Most notably, the two fingers controlled different stages of lymphopoiesis, and finger 4 was selectively required for tumor suppression. The distinct defects support the hypothesis that only a small number of genes that are targets of Ikaros are critical for each of its biological functions. The subcategorization of functions and target genes by mutagenesis of individual zinc fingers will facilitate efforts to understand how zinc-finger transcription factors regulate development, immunity and disease.


Subject(s)
Cell Transformation, Neoplastic/genetics , Gene Expression Regulation , Ikaros Transcription Factor/genetics , Leukemia/genetics , Lymphopoiesis/genetics , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Base Sequence , Binding Sites , Cell Differentiation/genetics , Cell Differentiation/immunology , Chromatin Immunoprecipitation , Cluster Analysis , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Gene Expression Profiling , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Ikaros Transcription Factor/metabolism , Immunophenotyping , Leukemia/metabolism , Leukemia/mortality , Lymphoma/genetics , Lymphoma/metabolism , Lymphoma/mortality , Mice , Mice, Knockout , Molecular Sequence Data , Nucleotide Motifs , Phenotype , Position-Specific Scoring Matrices , Protein Binding , Thymocytes/metabolism
18.
Trends Immunol ; 43(6): 459-465, 2022 06.
Article in English | MEDLINE | ID: mdl-35490132

ABSTRACT

Much has been learned about the genes and pathways that contribute to a diverse array of hematopoietic malignancies and other hematopoietic diseases. However, for many of these diseases, an allogeneic hematopoietic stem cell (HSC) transplant remains the preferred treatment option. This opinion article provides the perspective of a molecular immunologist who became a transplant patient after many years studying basic mechanisms of blood cell development. Among many lessons learned were the magnitude of racial and ethnic disparities in donor registries, the substantial improvement in outcomes over time that were due to the collective impact of numerous advances, the benefits and limitations of genetic and clinical data, and the remarkably intricate balance between promoting graft-versus-disease activity of donor cells while suppressing graft-versus-host disease (GVHD).


Subject(s)
Graft vs Host Disease , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Graft vs Host Disease/genetics , Humans , Transplantation Conditioning , Transplantation, Homologous
19.
Immunity ; 45(5): 949-951, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27851919

ABSTRACT

The diversity of mononuclear phagocytes has made it difficult to ascribe cellular functions to sub-populations using conventional loss-of-function approaches. In this issue of Immunity, Thomas et al. (2016) highlight the value of excising enhancer domains, effectively depleting defined lineages without altering other cellular physiology.


Subject(s)
Monocytes/immunology , Regulatory Sequences, Nucleic Acid , Humans
20.
Cell ; 140(6): 833-44, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20303874

ABSTRACT

An inflammatory response is initiated by the temporally controlled activation of genes encoding a broad range of regulatory and effector proteins. A central goal is to devise strategies for the selective modulation of proinflammatory gene transcription, to allow the suppression of genes responsible for inflammation-associated pathologies while maintaining a robust host response to microbial infection. Toward this goal, recent studies have revealed an unexpected level of diversity in the mechanisms by which chromatin structure and individual transcription factors contribute to the selective regulation of inflammatory genes.


Subject(s)
Inflammation/metabolism , Transcription, Genetic , Animals , Chromatin/metabolism , Humans , NF-kappa B/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL