Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cancer Immunol Immunother ; 73(10): 191, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105816

ABSTRACT

Drugs or cellular products that bind to gp100 are being investigated for treatment of cutaneous melanoma. The relative specificity of gp100 expression in melanocytes makes it an attractive target to harness for therapeutic intent. For example, Tebentafusp, a bispecific gp100 peptide-HLA-directed CD3 T cell engager, has generated significant enthusiasm in recent years due to its success in improving outcomes for uveal melanoma and is being studied in cutaneous melanoma. However, the extent and intensity of gp100 expression in advanced cutaneous melanoma has not been well studied. Here, we interrogated a large cohort of primary and metastatic melanomas for gp100 expression by immunohistochemistry. Expression in metastatic samples was globally higher and almost uniformly positive, however the degree of intensity was variable. Using a quantitative immunofluorescence method, we confirmed the variability in expression. As gp100-binding drugs are assessed in clinical trials, the association between activity of the drugs and the level of gp100 expression should be studied in order to potentially improve patient selection.


Subject(s)
Melanoma , Skin Neoplasms , gp100 Melanoma Antigen , Humans , Melanoma/metabolism , Melanoma/pathology , gp100 Melanoma Antigen/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Female , Male , Middle Aged , Aged , Biomarkers, Tumor/metabolism , Melanoma, Cutaneous Malignant , Immunohistochemistry
2.
J Vis Exp ; (205)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38619274

ABSTRACT

Melanoma-associated leptomeningeal disease (M-LMD) occurs when circulating tumor cells (CTCs) enter into the cerebral spinal fluid (CSF) and colonize the meninges, the membrane layers that protect the brain and the spinal cord. Once established, the prognosis for M-LMD patients is dismal, with overall survival ranging from weeks to months. This is primarily due to a paucity in our understanding of the disease and, as a consequence, the availability of effective treatment options. Defining the underlying biology of M-LMD will significantly improve the ability to adapt available therapies for M-LMD treatment or design novel inhibitors for this universally fatal disease. A major barrier, however, lies in obtaining sufficient quantities of CTCs from the patient-derived CSF (CSF-CTCs) to conduct preclinical experiments, such as molecular characterization, functional analysis, and in vivo efficacy studies. Culturing CSF-CTCs ex vivo has also proven to be challenging. To address this, a novel protocol for the culture of patient-derived M-LMD CSF-CTCs ex vivo and in vivo is developed. The incorporation of conditioned media produced by human meningeal cells (HMCs) is found to be critical to the procedure. Cytokine array analysis reveals that factors produced by HMCs, such as insulin-like growth factor-binding proteins (IGFBPs) and vascular endothelial growth factor-A (VEGF-A), are important in supporting CSF-CTC survival ex vivo. Here, the usefulness of the isolated patient-derived CSF-CTC lines is demonstrated in determining the efficacy of inhibitors that target the insulin-like growth factor (IGF) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, the ability to intrathecally inoculate these cells in vivo to establish murine models of M-LMD that can be employed for preclinical testing of approved or novel therapies is shown. These tools can help unravel the underlying biology driving CSF-CTC establishment in the meninges and identify novel therapies to reduce the morbidity and mortality associated with M-LMD.


Subject(s)
Melanoma , Neoplastic Cells, Circulating , Humans , Animals , Mice , Vascular Endothelial Growth Factor A , Brain , Cell Membrane
3.
Antioxidants (Basel) ; 13(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38790661

ABSTRACT

Microenvironment and transcriptional plasticity generate subpopulations within the tumor, and the use of BRAF inhibitors (BRAFis) contributes to the rise and selection of resistant clones. We stochastically isolated subpopulations (C1, C2, and C3) from naïve melanoma and found that the clones demonstrated distinct morphology, phenotypic, and functional profiles: C1 was less proliferative, more migratory and invasive, less sensitive to BRAFis, less dependent on OXPHOS, more sensitive to oxidative stress, and less pigmented; C2 was more proliferative, less migratory and invasive, more sensitive to BRAFis, less sensitive to oxidative stress, and more pigmented; and C3 was less proliferative, more migratory and invasive, less sensitive to BRAFis, more dependent on OXPHOS, more sensitive to oxidative stress, and more pigmented. Hydrogen peroxide plays a central role in oxidative stress and cell signaling, and PRDXs are one of its main consumers. The intrinsically resistant C1 and C3 clones had lower MITF, PGC-1α, and PRDX1 expression, while C1 had higher AXL and decreased pigmentation markers, linking PRDX1 to clonal heterogeneity and resistance. PRDX2 is depleted in acquired BRAFi-resistant cells and acts as a redox sensor. Our results illustrate that decreased pigmentation markers are related to therapy resistance and decreased antioxidant defense.

4.
J Exp Med ; 221(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38334978

ABSTRACT

An effective cancer therapy requires killing cancer cells and targeting the tumor microenvironment (TME). Searching for molecules critical for multiple cell types in the TME, we identified NR4A1 as one such molecule that can maintain the immune suppressive TME. Here, we establish NR4A1 as a valid target for cancer immunotherapy and describe a first-of-its-kind proteolysis-targeting chimera (PROTAC, named NR-V04) against NR4A1. NR-V04 degrades NR4A1 within hours in vitro and exhibits long-lasting NR4A1 degradation in tumors with an excellent safety profile. NR-V04 inhibits and frequently eradicates established tumors. At the mechanistic level, NR-V04 induces the tumor-infiltrating (TI) B cells and effector memory CD8+ T (Tem) cells and reduces monocytic myeloid-derived suppressor cells (m-MDSC), all of which are known to be clinically relevant immune cell populations in human melanomas. Overall, NR-V04-mediated NR4A1 degradation holds promise for enhancing anticancer immune responses and offers a new avenue for treating various types of cancers such as melanoma.


Subject(s)
Melanoma , Myeloid-Derived Suppressor Cells , Humans , Cell Line, Tumor , Immunotherapy , Melanoma/pathology , Myeloid-Derived Suppressor Cells/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Tumor Microenvironment , Proteolysis Targeting Chimera
SELECTION OF CITATIONS
SEARCH DETAIL