Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Biol Chem ; 295(16): 5278-5291, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32144206

ABSTRACT

Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous "heavy chains" (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin ß-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor ß, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering-based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation.


Subject(s)
Alpha-Globulins/chemistry , Extracellular Matrix/metabolism , Immunity, Innate , Molecular Dynamics Simulation , Ovulation , Humans , Integrin beta Chains/chemistry , Protein Domains , von Willebrand Factor/chemistry
2.
Epilepsia ; 62(7): 1518-1527, 2021 07.
Article in English | MEDLINE | ID: mdl-34002374

ABSTRACT

OBJECTIVE: Paroxysmal epileptiform abnormalities on electroencephalography (EEG) are the hallmark of epilepsies, but it is uncertain to what extent epilepsy and background EEG oscillations share neurobiological underpinnings. Here, we aimed to assess the genetic correlation between epilepsy and background EEG oscillations. METHODS: Confounding factors, including the heterogeneous etiology of epilepsies and medication effects, hamper studies on background brain activity in people with epilepsy. To overcome this limitation, we compared genetic data from a genome-wide association study (GWAS) on epilepsy (n = 12 803 people with epilepsy and 24 218 controls) with that from a GWAS on background EEG (n = 8425 subjects without epilepsy), in which background EEG oscillation power was quantified in four different frequency bands: alpha, beta, delta, and theta. We replicated our findings in an independent epilepsy replication dataset (n = 4851 people with epilepsy and 20 428 controls). To assess the genetic overlap between these phenotypes, we performed genetic correlation analyses using linkage disequilibrium score regression, polygenic risk scores, and Mendelian randomization analyses. RESULTS: Our analyses show strong genetic correlations of genetic generalized epilepsy (GGE) with background EEG oscillations, primarily in the beta frequency band. Furthermore, we show that subjects with higher beta and theta polygenic risk scores have a significantly higher risk of having generalized epilepsy. Mendelian randomization analyses suggest a causal effect of GGE genetic liability on beta oscillations. SIGNIFICANCE: Our results point to shared biological mechanisms underlying background EEG oscillations and the susceptibility for GGE, opening avenues to investigate the clinical utility of background EEG oscillations in the diagnostic workup of epilepsy.


Subject(s)
Electroencephalography , Epilepsy, Generalized/genetics , Epilepsy, Generalized/physiopathology , Adult , Algorithms , Beta Rhythm/genetics , Cohort Studies , Databases, Factual , Epilepsy, Generalized/diagnosis , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Mendelian Randomization Analysis , Risk Assessment , Theta Rhythm/genetics
3.
Brain ; 142(11): 3473-3481, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31608925

ABSTRACT

Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japanese-ancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64×10-15; Cleveland: P = 2.85×10-4; Finnish-ancestry Epi25: P = 1.80×10-4) or population controls (Epi25: P = 2.35×10-70; Cleveland: P = 1.43×10-7; Finnish-ancestry Epi25: P = 3.11×10-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99×10-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74×10-19; Cleveland: P = 1.69×10-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish European cohorts (Epi25: P = 2.60×10-15; Cleveland: P = 1.39×10-2). We conclude that common variant risk associated with epilepsy is significantly enriched in multiple cohorts of patients with epilepsy compared to controls-in particular for generalized epilepsy. As sample sizes and PRS accuracy continue to increase with further common variant discovery, PRS could complement established clinical biomarkers and augment genetic testing for patient classification, comorbidity research, and potentially targeted treatment.


Subject(s)
Epilepsies, Partial/genetics , Epilepsy, Generalized/genetics , Multifactorial Inheritance/genetics , Cohort Studies , Cost of Illness , Databases, Factual , Female , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide/genetics , White People
4.
Brain ; 141(1): 99-116, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29186350

ABSTRACT

Mucopolysaccharidosis IIIB is a paediatric lysosomal storage disease caused by deficiency of the enzyme α-N-acetylglucosaminidase (NAGLU), involved in the degradation of the glycosaminoglycan heparan sulphate. Absence of NAGLU leads to accumulation of partially degraded heparan sulphate within lysosomes and the extracellular matrix, giving rise to severe CNS degeneration with progressive cognitive impairment and behavioural problems. There are no therapies. Haematopoietic stem cell transplant shows great efficacy in the related disease mucopolysaccharidosis I, where donor-derived monocytes can transmigrate into the brain following bone marrow engraftment, secrete the missing enzyme and cross-correct neighbouring cells. However, little neurological correction is achieved in patients with mucopolysaccharidosis IIIB. We have therefore developed an ex vivo haematopoietic stem cell gene therapy approach in a mouse model of mucopolysaccharidosis IIIB, using a high-titre lentiviral vector and the myeloid-specific CD11b promoter, driving the expression of NAGLU (LV.NAGLU). To understand the mechanism of correction we also compared this with a poorly secreted version of NAGLU containing a C-terminal fusion to IGFII (LV.NAGLU-IGFII). Mucopolysaccharidosis IIIB haematopoietic stem cells were transduced with vector, transplanted into myeloablated mucopolysaccharidosis IIIB mice and compared at 8 months of age with mice receiving a wild-type transplant. As the disease is characterized by increased inflammation, we also tested the anti-inflammatory steroidal agent prednisolone alone, or in combination with LV.NAGLU, to understand the importance of inflammation on behaviour. NAGLU enzyme was substantially increased in the brain of LV.NAGLU and LV.NAGLU-IGFII-treated mice, with little expression in wild-type bone marrow transplanted mice. LV.NAGLU treatment led to behavioural correction, normalization of heparan sulphate and sulphation patterning, reduced inflammatory cytokine expression and correction of astrocytosis, microgliosis and lysosomal compartment size throughout the brain. The addition of prednisolone improved inflammatory aspects further. Substantial correction of lysosomal storage in neurons and astrocytes was also achieved in LV.NAGLU-IGFII-treated mice, despite limited enzyme secretion from engrafted macrophages in the brain. Interestingly both wild-type bone marrow transplant and prednisolone treatment alone corrected behaviour, despite having little effect on brain neuropathology. This was attributed to a decrease in peripheral inflammatory cytokines. Here we show significant neurological disease correction is achieved using haematopoietic stem cell gene therapy, suggesting this therapy alone or in combination with anti-inflammatories may improve neurological function in patients.


Subject(s)
Encephalitis/etiology , Encephalitis/therapy , Genetic Therapy/methods , Macrophages/enzymology , Mucopolysaccharidosis III , Stem Cells/physiology , Animals , Brain/enzymology , Cytokines/metabolism , Disease Models, Animal , Female , Gliosis/therapy , Glycosaminoglycans/genetics , Glycosaminoglycans/metabolism , Humans , Liver/enzymology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mucopolysaccharidosis III/complications , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/pathology , Mucopolysaccharidosis III/therapy , Prednisolone/therapeutic use , Spleen/enzymology , Sulfatases/genetics , Sulfatases/metabolism
5.
Neurobiol Learn Mem ; 96(2): 199-206, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21530666

ABSTRACT

Repeated cycles of ethanol intoxication and withdrawal associated with dependence induce neuroadaptations in a variety of brain systems. Withdrawal-induced negative emotional states can be ameliorated by ethanol consumption; a learned process termed negative reinforcement. Accordingly, a dependence-induced phenotype is escalated ethanol self-administration. Matrix metalloproteinases (MMPs) are proteolytic enzymes which degrade the extracellular matrix to allow for synaptic reorganization and plasticity. To test the hypothesis that an intact MMP system is required for animals to learn about the negative reinforcing effects of ethanol and display escalated self-administration during acute withdrawal when ethanol-dependent, male Wistar rats were trained to self-administer ethanol and then assigned to either acute or chronic MMP inhibition treatment groups. The chronic treatment group received intracerebroventricular (ICV) infusions of the broad spectrum MMP inhibitor FN-439 or artificial cerebrospinal fluid (aCSF) via osmotic minipumps during a 1 month ethanol dependence induction period and subsequent post-dependence induction self-administration sessions that occurred during acute withdrawal. The acute treatment group only received ICV FN-439 or aCSF on the day of self-administration sessions following dependence induction during acute withdrawal. The results showed that inhibition of MMPs attenuated escalated ethanol self-administration following chronic and acute exposure conditions. Furthermore, once learning (i.e., plasticity) had occurred, MMP inhibition had no impact on escalated response patterns and animals previously subjected to MMP inhibition that did not escalate evidenced normal escalations in operant ethanol self-administration once FN-439 treatments were terminated. Thus, the present data identified that an intact MMP system is required for the escalated responding that occurs during acute withdrawal in dependent animals and implicate such escalation as a learned response.


Subject(s)
Alcohol-Related Disorders/metabolism , Ethanol/administration & dosage , Matrix Metalloproteinases/metabolism , Neuronal Plasticity/physiology , Substance Withdrawal Syndrome/metabolism , Animals , Conditioning, Operant/physiology , Male , Rats , Rats, Wistar , Self Administration
6.
Cureus ; 13(7): e16648, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34458046

ABSTRACT

Introduction While many graduate medical education programs require residents to be certified in advanced cardiac life support, this does not cover all aspects of cardiac stabilization in patients with a pulse. Residents are often on the front lines of providing care to patients with life-threatening dysrhythmias. Our residents expressed a lack of confidence in their ability to provide this care. Methods A convenience sample of internal medicine, preliminary medicine, and transitional year residents from our large community-based tertiary care hospital participated in our survey and training. We utilized a pre-post survey method of our residents' confidence in domains that are critical to caring for patients requiring cardiac resuscitation and stabilization. Our pre-post survey was a modified Likert scale. Our training consisted of a 1-hour faculty-led hands-on training session focused on these critical domains in our hospital's simulation suites. Follow-up survey data were collected immediately after the training and at six and 11 months after the training using mean confidence across all five domains as the study variable. Results Resident mean confidence in the five domains (placing leads and pads, manipulating defibrillator controls, performing defibrillation, performing synchronized cardioversion, and performing transcutaneous pacemaker use) increased immediately after our training compared to before the training (p<0.001). This increase in confidence from before the training was sustained at six and 11 months after the training (p=0.001 and p=0.002, respectively). Confidence was lower at six and 11 months than immediately after training (p=0.01 and p=0.004, respectively). Conclusion Our project showed that simulation-based training was effective in improving our trainee's confidence in providing care to patients with life-threatening dysrhythmias. As with previous studies in simulation, confidence degradation was seen over time and likely mirrors skill degradation in these low-frequency encounters. As such, future aims include identification of ideal time intervals between training.

7.
Sci Rep ; 9(1): 2309, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783159

ABSTRACT

Endothelial colony forming progenitor cell (ECFC) function is compromised in diabetes, leading to poor vascular endothelial repair, which contributes to impaired diabetic foot ulcer healing. We have generated novel glycomimetic drugs with protective effects against endothelial dysfunction. We investigated the effect of glycomimetic C3 on the functional capacity of diabetic ECFCs. ECFCs were isolated from healthy controls and patients with diabetes with neuroischaemic (NI) or neuropathic (NP) foot ulcers. Functionally, diabetic ECFCs demonstrated delayed colony formation (p < 0.02), differential proliferative capacity (p < 0.001) and reduced NO bioavailability (NI ECFCs; p < 0.05). Chemokinetic migration and angiogenesis were also reduced in diabetic ECFCs (p < 0.01 and p < 0.001), and defects in wound closure and tube formation were apparent in NP ECFCs (p < 0.01). Differential patterns in mitochondrial activity were pronounced, with raised activity in NI and depressed activity in NP cells (p < 0.05). The application of glycomimetic improved scratch wound closure in vitro in patient ECFCs (p < 0.01), most significantly in NI cells (p < 0.001), where tube formation (p < 0.05) was also improved. We demonstrate restoration of the deficits in NI cells but not NP cells, using a novel glycomimetic agent, which may be advantageous for therapeutic cell transplantation or as a localised treatment for NI but not NP patients.


Subject(s)
Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/metabolism , Aged , Cell Movement/physiology , Cell Proliferation/physiology , Cells, Cultured , Endothelial Progenitor Cells/pathology , Female , Humans , Male , Middle Aged , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Physiologic/physiology
8.
Front Med (Lausanne) ; 5: 200, 2018.
Article in English | MEDLINE | ID: mdl-30042945

ABSTRACT

Over the past decade, we have witnessed an exponential growth of interest into the role of endothelial progenitor cells (EPCs) in cardiovascular disease. While the major thinking revolves around EPC angiogenic repair properties, we have used a hypothesis-driven approach to discover disease-related defects in their characteristics and based on these findings, have identified opportunities for functional enhancement, which offer an exciting avenue for translation into clinical intervention. In this review, we focus on two groups; circulating myeloid angiogenic cells (MACs) and late outgrowth endothelial colony forming cells (ECFCs), and will discuss the unique properties and defects of each population, as new insights have been gained into the potential function of each sub-type using current techniques and multiomic technology. We will discuss their role in inflammatory disorders and alterations in mitochondrial function. In addition, we share key insights into the glycocalyx, and propose this network of membrane-bound proteoglycans and glycoproteins, covering the endothelium warrants further investigation in order to clarify its significance in ECFC regulation of vascularization and angiogenesis and ultimately for potential translational therapeutic aspects.

9.
Lupus Sci Med ; 5(1): e000272, 2018.
Article in English | MEDLINE | ID: mdl-30167314

ABSTRACT

OBJECTIVE: 10-year cardiovascular disease (CVD) risk scores are calculated using algorithms, including Framingham (worldwide) and QRISK2 (UK). Recently, an updated QRISK3 model was introduced, which considers new variables including SLE and steroid prescription, not included in QRISK2 and Framingham algorithms. We sought to determine the extent to which QRISK3 improves identification of high-risk patients with SLE and whether the score relates to standard and novel markers of SLE-specific endothelial dysfunction. METHODS: Framingham and QRISK2/3 scores were calculated in patients with SLE (n=109) and healthy controls (n=29) using clinical measures. In a smaller cohort (n=58), markers of inflammation and endothelial dysfunction, including CD144+ endothelial microvesicles (EMVs), triglycerides, vascular cell adhesion molecule (VCAM) and high-sensitivity C reactive protein (hsCRP) were quantified by flow cytometry and ELISA, respectively. RESULTS: Patients with SLE demonstrated significantly higher QRISK3 scores than controls (5.0%vs0.3%, p<0.001). 21/109 patients with SLE (19%) and 24/109(22%) were newly identified as being at high risk of a CV event when using QRISK3 versus QRISK2 (29vs8patients) and QRISK3 versus Framingham (29vs5patients; p<0.001), respectively. These 'new QRISK3' patients with SLE were more likely to have lupus nephritis, be anticardiolipin antibody positive, currently prescribed corticosteroids, had a higher Body Mass Index and systolic blood pressure (BP) than low-risk patients with SLE. Rates of antiplatelet (8/21) and statin use (5/21) were low in the new QRISK3 group. EMVs, hsCRP and triglyceride levels were significantly higher in new QRISK3 patientscompared with low-risk patients with SLE (p<0.05). Furthermore, pulse wave velocity and VCAM were significantly elevated in all high versus low QRISK3 patients. CONCLUSIONS: QRISK3 captures significantly more patients with SLE with an elevated 10-year risk of developing CVD, which is associated with measures of endothelial dysfunction; EMVs and systolic BP. The adoption of QRISK3 will enhance management of CVD risk in patients with SLE for improved outcome.

10.
Neuropharmacology ; 61(1-2): 35-42, 2011.
Article in English | MEDLINE | ID: mdl-21338616

ABSTRACT

Previously, it was shown that ethanol-dependent animals display increased sensitivity to the general opioid receptor antagonist nalmefene compared to naltrexone. It was hypothesized that the dissociable effects of the two antagonists were attributable to a κ-opioid receptor mechanism. Nucleus accumbens dynorphin is upregulated following chronic ethanol exposure and such neuroadaptations could contribute to nalmefene's increased potency in ethanol-dependent animals. To test this hypothesis, male Wistar rats were trained to self-administer ethanol using an operant conditioning procedure. Animals were then implanted with bilateral intra-accumbens shell guide cannulae and assigned to either a chronic intermittent ethanol vapor-exposure condition (to induce dependence) or an air-exposed control group. Following a one-month exposure period, nalmefene, nor-binaltorphimine (nor-BNI; selective for κ-opioid receptors) or a combination of the selective opioid receptor antagonists CTOP and naltrindole (selective for the µ- and δ-opioid receptors, respectively) were site-specifically infused into the nucleus accumbens shell prior to ethanol self-administration sessions during acute withdrawal. Nalmefene and CTOP/naltrindole dose-dependently reduced ethanol self-administration in nondependent and dependent animals, whereas nor-BNI selectively attenuated ethanol self-administration in ethanol-dependent animals without affecting the self-administration of nondependent animals. Further analysis indentified that intra-accumbens shell nalmefene was more potent in ethanol-dependent animals and that the increased potency was attributable to a κ-opioid receptor mechanism. These data support the concept that dysregulation of DYN/κ-opioid receptor systems contributes to the excessive self-administration observed in dependent animals and suggest that pharmacotherapeutics for ethanol dependence that target κ-opioid receptors, in addition to µ- and δ-opioid receptors, are preferable to those that target µ- and δ-opioid receptor mechanisms alone.


Subject(s)
Alcoholism/drug therapy , Alcoholism/metabolism , Ethanol/administration & dosage , Naltrexone/analogs & derivatives , Nucleus Accumbens/drug effects , Receptors, Opioid, kappa/physiology , Animals , Infusions, Intraventricular , Male , Naltrexone/administration & dosage , Nucleus Accumbens/physiology , Rats , Rats, Wistar , Receptors, Opioid, kappa/antagonists & inhibitors , Self Administration
11.
Biosecur Bioterror ; 7(4): 429-32, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20028251

ABSTRACT

We conducted an electronic survey to determine the state of planning for pandemic influenza in assisted living facilities. A survey instrument was designed with input from a number of experts and sent out to 275 Nebraska assisted living facilities; responses were received from 137. The survey covered approximately 20 areas related to preparedness. About one-third of assisted living facilities had a pandemic influenza plan; 45% had started stockpiling, and 55% expected significant staff shortages in a pandemic. Only 5% were willing to discharge current patients to make room for overflow hospital patients. Assisted living facilities have started pandemic influenza planning, but additional work needs to be done. These facilities are unlikely to be able to assist with hospital patient overflow in a pandemic.


Subject(s)
Assisted Living Facilities , Disaster Planning , Influenza A Virus, H1N1 Subtype , Influenza, Human , Assisted Living Facilities/standards , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Nebraska/epidemiology , Surge Capacity/organization & administration , Surveys and Questionnaires , Workforce
12.
J Biol Chem ; 282(40): 29521-30, 2007 Oct 05.
Article in English | MEDLINE | ID: mdl-17690105

ABSTRACT

This study describes the enzymatic characterization of dihydrolipoamide dehydrogenase (DLDH) from Streptococcus pneumoniae and is the first characterization of a DLDH that carries its own substrate (a lipoic acid covalently attached to a lipoyl protein domain) within its own sequence. Full-length recombinant DLDH (rDLDH) was expressed and compared with enzyme expressed in the absence of lipoic acid (rDLDH(-LA)) or with enzyme lacking the first 112 amino acids constituting the lipoyl protein domain (rDLDH(-LIPOYL)). All three proteins contained 1 mol of FAD/mol of protein, had a higher activity for the conversion of NAD(+) to NADH than for the reaction in the reverse direction, and were unable to use NADP(+) and NADPH as substrates. The enzymes had similar substrate specificities, with the K(m) for NAD(+) being approximately 20 times higher than that for dihydrolipoamide. The kinetic pattern suggested a Ping Pong Bi Bi mechanism, which was verified by product inhibition studies. The protein expressed without lipoic acid was indistinguishable from the wild-type protein in all analyses. On the other hand, the protein without a lipoyl protein domain had a 2-3-fold higher turnover number, a lower K(I) for NADH, and a higher K(I) for lipoamide compared with the other two enzymes. The results suggest that the lipoyl protein domain (but not lipoic acid alone) plays a regulatory role in the enzymatic characteristics of pneumococcal DLDH.


Subject(s)
Dihydrolipoamide Dehydrogenase/chemistry , Streptococcus pneumoniae/enzymology , Flavins/chemistry , Kinetics , Models, Chemical , NAD/chemistry , Protein Binding , Protein Structure, Tertiary , Pyruvate Dehydrogenase Complex/chemistry , Recombinant Proteins/chemistry , Sequence Analysis, DNA , Substrate Specificity , Sulfhydryl Compounds/chemistry , Thioctic Acid/chemistry
13.
Mol Microbiol ; 44(2): 431-48, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11972781

ABSTRACT

In the present study, we have characterized the dihydrolipoamide dehydrogenase (DLDH) of Strepto-coccus pneumoniae and its role during pneumococcal infection. We have also demonstrated that a lack of DLDH results in a deficiency in alpha-galactoside metabolism and galactose transport. DLDH is an enzyme that is classically involved in the three-step conversion of 2-oxo acids to their respective acyl-CoA derivatives, but DLDH has also been shown to have other functions. The dldh gene was virtually identical in three pneumococcal strains examined. Besides the functional domains and motifs associated with this enzyme, analysis of the pneumococcal dldh gene sequence revealed the presence of an N-terminal lipoyl domain. DLDH-negative bacteria totally lacked DLDH activity, indicating that this gene encodes the only DLDH in S. pneumoniae. These DLDH-negative bacteria grew normally in vitro but were avirulent in sepsis and lung infection models in mice, indicating that DLDH activity is necessary for the survival of pneumococci within the host. The lack of virulence was not associated with a loss of 2-oxo acid dehydrogenase activity, as the wild-type pneumococcal strains did not contain activity of any of the known 2-oxo acid enzyme complexes. Instead, studies of carbohydrate utilization demonstrated that the DLDH-negative bacteria were impaired for alpha-galactoside and galactose metabolism. The DLDH mutants lost their ability to oxidize or grow with galactose or melibiose as sole carbon source and showed reduced oxidation and growth on raffinose or stachyose. The bacteria had an 85% reduction in alpha-galactosidase activity and showed virtually no transport of galactose into the cells, which can explain these phenotypic changes. The DLDH-negative bacteria produced only 50% of normal capsular polysaccharide, a phenotype that may be associated with impaired carbohydrate metabolism.


Subject(s)
Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/metabolism , Genes, Bacterial , Streptococcus pneumoniae/enzymology , Amino Acid Sequence , Gene Deletion , Humans , Kinetics , Molecular Sequence Data , Mutagenesis , Open Reading Frames , Phylogeny , Pneumococcal Infections/microbiology , Sequence Alignment , Sequence Homology, Amino Acid , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Transformation, Bacterial , alpha-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL