Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(6): e2218473120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36716372

ABSTRACT

The outer membrane (OM) is the defining feature of gram-negative bacteria and is an essential organelle. Accordingly, OM assembly pathways and their essential protein components are conserved throughout all gram-negative species. Lipoprotein trafficking lies at the heart of OM assembly since it supplies several different biogenesis machines with essential lipoproteins. The Escherichia coli Lol trafficking pathway relies on an inner membrane LolCDE transporter that transfers newly made lipoproteins to the chaperone LolA, which rapidly traffics lipoproteins across the periplasm to LolB for insertion into the OM. Strikingly, many gram-negative species (like Caulobacter vibrioides) do not produce LolB, yet essential lipoproteins are still trafficked to the OM. How the final step of trafficking occurs in these organisms has remained a long-standing mystery. We demonstrate that LolA from C. vibrioides can complement the deletion of both LolA and LolB in E. coli, revealing that this protein possesses both chaperone and insertion activities. Moreover, we define the region of C. vibrioides LolA that is responsible for its bifunctionality. This knowledge enabled us to convert E. coli LolA into a similarly bifunctional protein, capable of chaperone and insertion activities. We propose that a bifunctional LolA eliminates the need for LolB. Our findings provide an explanation for why some gram-negative species have retained an essential LolA yet completely lack a dedicated LolB protein.


Subject(s)
Escherichia coli Proteins , Periplasmic Binding Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Periplasmic Binding Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Lipoproteins/genetics , Lipoproteins/metabolism
2.
PLoS Genet ; 19(9): e1010938, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37721956

ABSTRACT

mTORC1 (mechanistic target of rapamycin complex 1) is a metabolic sensor that promotes growth when nutrients are abundant. Ubiquitous inhibition of mTORC1 extends lifespan in multiple organisms but also disrupts several anabolic processes resulting in stunted growth, slowed development, reduced fertility, and disrupted metabolism. However, it is unclear if these pleiotropic effects of mTORC1 inhibition can be uncoupled from longevity. Here, we utilize the auxin-inducible degradation (AID) system to restrict mTORC1 inhibition to C. elegans neurons. We find that neuron-specific degradation of RAGA-1, an upstream activator of mTORC1, or LET-363, the ortholog of mammalian mTOR, is sufficient to extend lifespan in C. elegans. Unlike raga-1 loss of function genetic mutations or somatic AID of RAGA-1, neuronal AID of RAGA-1 robustly extends lifespan without impairing body size, developmental rate, brood size, or neuronal function. Moreover, while degradation of RAGA-1 in all somatic tissues alters the expression of thousands of genes, demonstrating the widespread effects of mTORC1 inhibition, degradation of RAGA-1 in neurons only results in around 200 differentially expressed genes with a specific enrichment in metabolism and stress response. Notably, our work demonstrates that targeting mTORC1 specifically in the nervous system in C. elegans uncouples longevity from growth and reproductive impairments, and that many canonical effects of low mTORC1 activity are not required to promote healthy aging. These data challenge previously held ideas about the mechanisms of mTORC1 lifespan extension and underscore the potential of promoting longevity by neuron-specific mTORC1 modulation.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Caenorhabditis elegans/metabolism , Longevity/genetics , Multiprotein Complexes/genetics , Reproduction/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Mammals/metabolism
3.
Brain ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833623

ABSTRACT

Congenital hydrocephalus (CH), characterized by cerebral ventriculomegaly, is one of the most common reasons for pediatric brain surgery. Recent studies have implicated lin-41 (lineage variant 41)/TRIM71 (tripartite motif 71) as a candidate CH risk gene, however, TRIM71 variants have not been systematically examined in a large patient cohort or conclusively linked with an OMIM syndrome. Through cross-sectional analysis of the largest assembled cohort of patients with cerebral ventriculomegaly, including neurosurgically-treated CH (totaling 2,697 parent-proband trios and 8,091 total exomes), we identified 13 protein-altering de novo variants (DNVs) in TRIM71 in unrelated children exhibiting variable ventriculomegaly, CH, developmental delay, dysmorphic features, and other structural brain defects including corpus callosum dysgenesis and white matter hypoplasia. Eight unrelated patients were found to harbor arginine variants, including two recurrent missense DNVs, at homologous positions in RPXGV motifs of different NHL domains. Seven additional patients with rare, damaging, unphased or transmitted variants of uncertain significance were also identified. NHL-domain variants of TRIM71 exhibited impaired binding to the canonical TRIM71 target CDKN1A; other variants failed to direct the subcellular localization of TRIM71 to processing bodies. Single-cell transcriptomic analysis of human embryos revealed expression of TRIM71 in early first-trimester neural stem cells of the brain. These data show TRIM71 is essential for human brain morphogenesis and that TRIM71 mutations cause a novel neurodevelopmental syndrome featuring ventriculomegaly and CH.

4.
Brain ; 147(4): 1553-1570, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38128548

ABSTRACT

Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery in children. Recent studies have implicated SMARCC1, a component of the BRG1-associated factor (BAF) chromatin remodelling complex, as a candidate congenital hydrocephalus gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, congenital hydrocephalus-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo. Here, we aimed to assess the prevalence of SMARCC1 variants in an expanded patient cohort, describe associated clinical and radiographic phenotypes, and assess the impact of Smarcc1 depletion in a novel Xenopus tropicalis model of congenital hydrocephalus. To do this, we performed a genetic association study using whole-exome sequencing from a cohort consisting of 2697 total ventriculomegalic trios, including patients with neurosurgically-treated congenital hydrocephalus, that total 8091 exomes collected over 7 years (2016-23). A comparison control cohort consisted of 1798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents were sourced from the Simons Simplex Collection. Enrichment and impact on protein structure were assessed in identified variants. Effects on the human fetal brain transcriptome were examined with RNA-sequencing and Smarcc1 knockdowns were generated in Xenopus and studied using optical coherence tomography imaging, in situ hybridization and immunofluorescence. SMARCC1 surpassed genome-wide significance thresholds, yielding six rare, protein-altering de novo variants localized to highly conserved residues in key functional domains. Patients exhibited hydrocephalus with aqueductal stenosis; corpus callosum abnormalities, developmental delay, and cardiac defects were also common. Xenopus knockdowns recapitulated both aqueductal stenosis and cardiac defects and were rescued by wild-type but not patient-specific variant SMARCC1. Hydrocephalic SMARCC1-variant human fetal brain and Smarcc1-variant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2. These results suggest de novo variants in SMARCC1 cause a novel human BAFopathy we term 'SMARCC1-associated developmental dysgenesis syndrome', characterized by variable presence of cerebral ventriculomegaly, aqueductal stenosis, developmental delay and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodelling complex for human brain morphogenesis and provide evidence for a 'neural stem cell' paradigm of congenital hydrocephalus pathogenesis. These results highlight utility of trio-based whole-exome sequencing for identifying pathogenic variants in sporadic congenital structural brain disorders and suggest whole-exome sequencing may be a valuable adjunct in clinical management of congenital hydrocephalus patients.


Subject(s)
Autism Spectrum Disorder , Cerebral Aqueduct/abnormalities , Genetic Diseases, X-Linked , Hydrocephalus , Child , Humans , Autism Spectrum Disorder/genetics , Transcription Factors/genetics , Hydrocephalus/diagnostic imaging , Hydrocephalus/genetics , Epigenesis, Genetic , Eye Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics
5.
Nature ; 571(7763): 90-94, 2019 07.
Article in English | MEDLINE | ID: mdl-31270480

ABSTRACT

Silicon dominates contemporary solar cell technologies1. But when absorbing photons, silicon (like other semiconductors) wastes energy in excess of its bandgap2. Reducing these thermalization losses and enabling better sensitivity to light is possible by sensitizing the silicon solar cell using singlet exciton fission, in which two excited states with triplet spin character (triplet excitons) are generated from a photoexcited state of higher energy with singlet spin character (a singlet exciton)3-5. Singlet exciton fission in the molecular semiconductor tetracene is known to generate triplet excitons that are energetically matched to the silicon bandgap6-8. When the triplet excitons are transferred to silicon they create additional electron-hole pairs, promising to increase cell efficiencies from the single-junction limit of 29 per cent to as high as 35 per cent9. Here we reduce the thickness of the protective hafnium oxynitride layer at the surface of a silicon solar cell to just eight angstroms, using electric-field-effect passivation to enable the efficient energy transfer of the triplet excitons formed in the tetracene. The maximum combined yield of the fission in tetracene and the energy transfer to silicon is around 133 per cent, establishing the potential of singlet exciton fission to increase the efficiencies of silicon solar cells and reduce the cost of the energy that they generate.

6.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38275188

ABSTRACT

Clinical improvement following neurosurgical cerebrospinal fluid shunting for presumed idiopathic normal pressure hydrocephalus is variable. Idiopathic normal pressure hydrocephalus patients may have undetected Alzheimer's disease-related cortical pathology that confounds diagnosis and clinical outcomes. In this study, we sought to determine the utility of cortical tissue immuno-analysis in predicting shunting outcomes in idiopathic normal pressure hydrocephalus patients. We performed a pooled analysis using a systematic review as well as analysis of a new, original patient cohort. Of the 2707 screened studies, 3 studies with a total of 229 idiopathic normal pressure hydrocephalus patients were selected for inclusion in this meta-analysis alongside our original cohort. Pooled statistics of shunting outcomes for the 229 idiopathic normal pressure hydrocephalus patients and our new cohort of 36 idiopathic normal pressure hydrocephalus patients revealed that patients with Aß + pathology were significantly more likely to exhibit shunt nonresponsiveness than patients with negative pathology. Idiopathic normal pressure hydrocephalus patients with Alzheimer's disease -related cortical pathology may be at a higher risk of treatment facing unfavorable outcomes following cerebrospinal fluid shunting. Thus, cortical tissue analysis from living patients may be a useful diagnostic and prognostic adjunct for patients with presumed idiopathic normal pressure hydrocephalus and potentially other neurodegenerative conditions affecting the cerebral cortex.


Subject(s)
Alzheimer Disease , Hydrocephalus, Normal Pressure , Humans , Hydrocephalus, Normal Pressure/surgery , Hydrocephalus, Normal Pressure/pathology , Cerebral Cortex/pathology
7.
Mol Cancer ; 23(1): 7, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195591

ABSTRACT

In the early 1990's a group of unrelated genes were identified from the sites of recurring translocations in B-cell lymphomas. Despite sharing the nomenclature 'Bcl', and an association with blood-borne cancer, these genes have unrelated functions. Of these genes, BCL2 is best known as a key cancer target involved in the regulation of caspases and other cell viability mechanisms. BCL3 on the other hand was originally identified as a non-canonical regulator of NF-kB transcription factor pathways - a signaling mechanism associated with important cell outcomes including many of the hallmarks of cancer. Most of the early investigations into BCL3 function have since focused on its role in NF-kB mediated cell proliferation, inflammation/immunity and cancer. However, recent evidence is coming to light that this protein directly interacts with and modulates a number of other signaling pathways including DNA damage repair, WNT/ß-catenin, AKT, TGFß/SMAD3 and STAT3 - all of which have key roles in cancer development, metastatic progression and treatment of solid tumours. Here we review the direct evidence demonstrating BCL3's central role in a transcriptional network of signaling pathways that modulate cancer biology and treatment response in a range of solid tumour types and propose common mechanisms of action of BCL3 which may be exploited in the future to target its oncogenic effects for patient benefit.


Subject(s)
Hematologic Neoplasms , NF-kappa B , Humans , Neoplasm Recurrence, Local , Proto-Oncogenes , Cell Proliferation
8.
Br J Cancer ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965423

ABSTRACT

PURPOSE: PARP inhibitors (PARPi) are effective in homologous recombination repair (HRR) defective (HRD) cancers. To (re)sensitise HRR proficient (HRP) tumours to PARPi combinations with other drugs are being explored. Our aim was to determine the mechanism underpinning the sensitisation to PARPi by inhibitors of cell cycle checkpoint kinases ATR, CHK1 and WEE1. EXPERIMENTAL DESIGN: A panel of HRD and HRP cells (including matched BRCA1 or 2 mutant and corrected pairs) and ovarian cancer ascites cells were used. Rucaparib (PARPi) induced replication stress (RS) and HRR (immunofluorescence microscopy for γH2AX and RAD51 foci, respectively), cell cycle changes (flow cytometry), activation of ATR, CHK1 and WEE1 (Western Blot for pCHK1S345, pCHK1S296 and pCDK1Y15, respectively) and cytotoxicity (colony formation assay) was determined, followed by investigations of the impact on all of these parameters by inhibitors of ATR (VE-821, 1 µM), CHK1 (PF-477736, 50 nM) and WEE1 (MK-1775, 100 nM). RESULTS: Rucaparib induced RS (3 to10-fold), S-phase accumulation (2-fold) and ATR, CHK1 and WEE1 activation (up to 3-fold), and VE-821, PF-477736 and MK-1775 inhibited their targets and abrogated these rucaparib-induced cell cycle changes in HRP and HRD cells. Rucaparib activated HRR in HRP cells only and was (60-1,000x) more cytotoxic to HRD cells. VE-821, PF-477736 and MK-1775 blocked HRR and sensitised HRP but not HRD cells and primary ovarian ascites to rucaparib. CONCLUSIONS: Our data indicate that, rather than acting via abrogation of cell cycle checkpoints, ATR, CHK1 and WEE1 inhibitors cause an HRD phenotype and hence "induced synthetic lethality" with PARPi.

9.
Biochem Soc Trans ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940746

ABSTRACT

Cellular senescence, a form of terminal cell cycle arrest, is as a key driver of organismal ageing and an important factor in age-related diseases. Insights into the senescent phenotype have led to the development of novel therapeutic strategies, collectively known as senotherapies, that aim to ameliorate the detrimental effects of senescent cell accumulation in tissues. The senotherapeutic field has rapidly evolved over the past decade, with clinical translation of the first drugs discovered currently underway. What began as the straightforward removal of senescent cells using repurposed compounds, which were given the name of senolytics, has grown into an expanding field that uses different state of the art approaches to achieve the goal of preventing the build-up of senescent cells in the body. Here, we summarize the emergence of a new generation of senotherapies, based on improving the efficacy and safety of the original senolytics by making them targeted, but also branching out into drugs that prevent senescence (senoblockers) or revert it (senoreversers).The use of nanotechnology, specific antibodies, cell-based approaches and restored immunosurveillance is likely to revolutionize the field of senotherapies in the near future, hopefully allowing it to realize its full clinical potential.

10.
Clin Sci (Lond) ; 138(14): 921-940, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38949840

ABSTRACT

Salt-sensitive hypertension (SSHTN) is associated with M1 macrophage polarization and inflammatory responses, leading to inflammation-associated lymphangiogenesis and functional impairment across multiple organs, including kidneys and gonads. However, it remains unclear whether promoting M2 macrophage polarization can alleviate the hypertension, inflammation, and end organ damage in mice with salt sensitive hypertension (SSHTN). Male and female mice were made hypertensive by administering nitro-L-arginine methyl ester hydrochloride (L-NAME; 0.5 mg/ml) for 2 weeks in the drinking water, followed by a 2-week interval without any treatments, and a subsequent high salt diet for 3 weeks (SSHTN). AVE0991 (AVE) was intraperitoneally administered concurrently with the high salt diet. Control mice were provided standard diet and tap water. AVE treatment significantly attenuated BP and inflammation in mice with SSHTN. Notably, AVE promoted M2 macrophage polarization, decreased pro-inflammatory immune cell populations, and improved function in renal and gonadal tissues of mice with SSHTN. Additionally, AVE decreased lymphangiogenesis in the kidneys and testes of male SSHTN mice and the ovaries of female SSHTN mice. These findings highlight the effectiveness of AVE in mitigating SSHTN-induced elevated BP, inflammation, and end organ damage by promoting M2 macrophage polarization and suppressing pro-inflammatory immune responses. Targeting macrophage polarization emerges as a promising therapeutic approach for alleviating inflammation and organ damage in SSHTN. Further studies are warranted to elucidate the precise mechanisms underlying AVE-mediated effects and to assess its clinical potential in managing SSHTN.


Subject(s)
Hypertension , Inflammation , Kidney , Macrophages , Sodium Chloride, Dietary , Animals , Male , Macrophages/immunology , Macrophages/drug effects , Female , Hypertension/immunology , Hypertension/drug therapy , Hypertension/physiopathology , Kidney/drug effects , Kidney/pathology , Kidney/immunology , Lymphangiogenesis/drug effects , Mice, Inbred C57BL , Mice , Blood Pressure/drug effects , Testis/drug effects , Testis/pathology , Disease Models, Animal
11.
Clin Sci (Lond) ; 138(14): 901-920, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38949825

ABSTRACT

We reported that salt-sensitive hypertension (SSHTN) is associated with increased pro-inflammatory immune cells, inflammation, and inflammation-associated lymphangiogenesis in the kidneys and gonads of male and female mice. However, it is unknown whether these adverse end organ effects result from increased blood pressure (BP), elevated levels of salt, or both. We hypothesized that pharmaceutically lowering BP would not fully alleviate the renal and gonadal immune cell accumulation, inflammation, and lymphangiogenesis associated with SSHTN. SSHTN was induced in male and female C57BL6/J mice by administering nitro-L-arginine methyl ester hydrochloride (L-NAME; 0.5 mg/ml) in their drinking water for 2 weeks, followed by a 2-week washout period. Subsequently, the mice received a 3-week 4% high salt diet (SSHTN). The treatment group underwent the same SSHTN induction protocol but received hydralazine (HYD; 250 mg/L) in their drinking water during the diet phase (SSHTN+HYD). Control mice received tap water and a standard diet for 7 weeks. In addition to decreasing systolic BP, HYD treatment generally decreased pro-inflammatory immune cells and inflammation in the kidneys and gonads of SSHTN mice. Furthermore, the decrease in BP partially alleviated elevated renal and gonadal lymphatics and improved renal and gonadal function in mice with SSHTN. These data demonstrate that high systemic pressure and salt differentially act on end organ immune cells, contributing to the broader understanding of how BP and salt intake collectively shape immune responses and highlight implications for targeted therapeutic interventions.


Subject(s)
Blood Pressure , Hypertension , Inflammation , Kidney , Mice, Inbred C57BL , Sodium Chloride, Dietary , Animals , Hypertension/immunology , Hypertension/physiopathology , Hypertension/drug therapy , Hypertension/chemically induced , Male , Female , Blood Pressure/drug effects , Sodium Chloride, Dietary/adverse effects , Kidney/immunology , Kidney/drug effects , Inflammation/immunology , Lymphangiogenesis/drug effects , Antihypertensive Agents/pharmacology , Mice , Hydralazine/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Disease Models, Animal , Gonads/drug effects
12.
MMWR Morb Mortal Wkly Rep ; 73(24): 558-564, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38900702

ABSTRACT

In September 2022, CDC funded a nationwide program, Together TakeMeHome (TTMH), to expand distribution of HIV self-tests (HIVSTs) directly to consumers by mail through an online ordering portal. To publicize the availability of HIVSTs to priority audiences, particularly those disproportionately affected by HIV, CDC promoted this program through established partnerships and tailored resources from its Let's Stop HIV Together social marketing campaign. The online portal launched March 14, 2023, and through March 13, 2024, distributed 443,813 tests to 219,360 persons. Among 169,623 persons who answered at least one question on a postorder questionnaire, 67.9% of respondents were from priority audiences, 24.1% had never previously received testing for HIV, and 24.8% had not received testing in the past year. Among the subset of participants who initiated a follow-up survey, 88.3% used an HIVST themselves, 27.1% gave away an HIVST, 11.7% accessed additional preventive services, and 1.9% reported a new positive HIVST result. Mailed HIVST distribution can quickly reach large numbers of persons who have never received testing for HIV or have not received testing as often as is recommended. TTMH can help to achieve the goal of diagnosing HIV as early as possible and provides a path to other HIV prevention and care services. Clinicians, community organizations, and public health officials should be aware of HIVST programs, initiate discussions about HIV testing conducted outside their clinics or offices, and initiate follow-up services for persons who report a positive or negative HIVST result.


Subject(s)
HIV Infections , Humans , United States/epidemiology , HIV Infections/diagnosis , HIV Infections/prevention & control , HIV Infections/epidemiology , Adult , Male , Female , Young Adult , Middle Aged , Adolescent , Financing, Government , Direct-To-Consumer Screening and Testing , Program Evaluation , HIV Testing/statistics & numerical data , Self-Testing , Aged
13.
Cereb Cortex ; 33(23): 11400-11407, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37814356

ABSTRACT

Idiopathic normal pressure hydrocephalus is a disorder of unknown pathophysiology whose diagnosis is paradoxically made by a positive response to its proposed treatment with cerebrospinal fluid diversion. There are currently no idiopathic normal pressure hydrocephalus disease genes or biomarkers. A systematic analysis of familial idiopathic normal pressure hydrocephalus could aid in clinical diagnosis, prognosis, and treatment stratification, and elucidate disease patho-etiology. In this 2-part analysis, we review literature-based evidence for inheritance of idiopathic normal pressure hydrocephalus in 22 pedigrees, and then present a novel case series of 8 familial idiopathic normal pressure hydrocephalus patients. For the case series, demographics, familial history, pre- and post-operative symptoms, and cortical pathology were collected. All novel familial idiopathic normal pressure hydrocephalus patients exhibited improvement following shunt treatment and absence of neurodegenerative cortical pathology (amyloid-beta and hyperphosphorylated tau), in contrast to many sporadic cases of idiopathic normal pressure hydrocephalus with variable clinical responses. Analysis of the 30 total familial idiopathic normal pressure hydrocephalus cases reported herein is highly suggestive of an autosomal dominant mechanism of inheritance. This largest-ever presentation of multiply affected idiopathic normal pressure hydrocephalus pedigrees provides strong evidence for Mendelian inheritance and autosomal dominant transmission of an idiopathic normal pressure hydrocephalus trait in a subset of patients that positively respond to shunting and lack neurodegenerative pathology. Genomic investigation of these families may identify the first bona fide idiopathic normal pressure hydrocephalus disease gene.


Subject(s)
Hydrocephalus, Normal Pressure , Humans , Hydrocephalus, Normal Pressure/genetics , Hydrocephalus, Normal Pressure/surgery , Hydrocephalus, Normal Pressure/cerebrospinal fluid , Prognosis , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid
14.
Article in English | MEDLINE | ID: mdl-39069987

ABSTRACT

Background: Opioid use disorder (OUD) is associated with significant morbidity and mortality. Medication for opioid use disorder (MOUD) is a cost-effective treatment, but retention rates vary widely. Aim: Mixed methods studies are needed to better understand how depression and pain impact the experience of OUD and MOUD treatment experiences. Methods: Participants were recruited from an urban addiction treatment center in the United States. Along with demographic characteristics, current pain severity, pain interference, pain catastrophizing, and depression were assessed via self-report. Correlational analyses, multivariable logistic regression models, Fisher exact tests, and Wilcoxon signed rank tests were used to examine the impact of demographic characteristics, physical pain, and depression on multiple treatment outcomes: 90-day treatment engagement (total number of dispensed MOUD doses), retention (yes/no still in treatment at 90 days), and opioid use (positive/negative urinalysis for opioids at 90 days). Ten participants were interviewed about their history with physical pain, depression, opioid use, and OUD treatment experiences. Themes were identified using a rapid analysis, top-down approach. Results: Fifty participants enrolled in the study and received buprenorphine (12%) or methadone (88%). Older age was associated with 90-day treatment engagement. Higher depression scores were associated with a positive opioid urinalysis at 90-day follow-up. In interviews, participants reported experiencing chronic physical pain and depression before and during their OUD and an interest in addressing mental and physical health in addiction treatment. Conclusions: Addressing co-occurring physical and mental health concerns during MOUD treatment has the potential to improve the treatment experience and abstinence from opioids.

15.
J Youth Adolesc ; 53(2): 472-484, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37819476

ABSTRACT

Limited research has explored the longitudinal pathway to youth career interests via identity and efficacy together. This study examined the longitudinal associations between science efficacy, STEM (science, technology, engineering and math) identity, and scientist career interest among girls who are historically considered as an underrepresented group among scientists. The sample included 308 girls (M age = 15.22, SD age = 1.66; 42.8% White) from six STEM youth programs, each at a different informal science learning site within the U.K. and the U.S. Longitudinal structural equation modelling demonstrated that science efficacy consistently predicted STEM identity and scientist career interest, and similarly, STEM identity consistently predicted science efficacy over a two-year period. Scientist career interest at 12 months predicted science efficacy at 24 months. The coefficients of efficacy predicting STEM identity and scientist career interest were significantly larger compared to STEM identity and scientist career interest in predicting science efficacy from 12 months to 24 months. Further mediation analysis supported a significant pathway from STEM identity at 3 months to scientist career interest at 24 months via 12-month science efficacy. The findings highlight that science efficacy and STEM identity for girls relate to their scientist career interest and these longitudinal associations are reciprocal. This study suggests that science efficacy and STEM identity mutually influence each other, and enhancing science efficacy and STEM identity is key to promoting adolescents' interest in being a scientist.


Subject(s)
Career Choice , Students , Female , Humans , Adolescent , Infant , Engineering , Technology , Mathematics
16.
J Youth Adolesc ; 53(7): 1542-1563, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38418750

ABSTRACT

Motivation is a key factor in engagement, achievement, and career choices in science, technology, engineering, and mathematics (STEM). While existing research has focused on student motivation toward math in formal school programs, new work is needed that focuses on motivation for those involved in informal STEM programs. Specifically, the role of math mindset and perceived inclusivity of informal STEM sites (to those of varying gender and ethnic backgrounds) on longitudinal trajectories of adolescents' math motivation has not been explored. This study investigates longitudinal changes in math expectancy, interest, and utility values and the effects of math fixed mindset, math growth mindset, and perceptions of the inclusivity of informal STEM learning sites on these changes for adolescents participating in STEM programs at these informal sites in the United Kingdom and the United States (n = 249, MT1age = 15.2, SD = 1.59). Three latent growth curve models were tested. The data suggest that math expectancy, interest, and utility values declined over three years. Growth mindset positively predicted changes in utility, while fixed mindset negatively predicted changes in utility. Inclusivity positively influenced the initial levels of utility. Girls reported lower initial expectancy than boys. Age influenced both the initial levels and rate of change for expectancy. Older adolescents had lower levels of expectancy compared to their younger counterparts; however, they had a less steep decline in expectancy over three years. These findings suggest that designing inclusive learning environments and promoting growth mindset may encourage math motivation.


Subject(s)
Mathematics , Motivation , Humans , Adolescent , Female , Male , United States , Longitudinal Studies , United Kingdom , Engineering/education , Science/education , Adolescent Development , Technology , Students/psychology , Career Choice
17.
Forensic Sci Med Pathol ; 20(1): 117-128, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37084127

ABSTRACT

Identification of subjects, including perpetrators, is one of the most crucial goals of forensic science. Saliva is among the most common biological fluids found at crime scenes, containing identifiable components. DNA has been the most prominent identifier to date, but its analysis can be complex due to low DNA yields and issues preserving its integrity at the crime scene. Proteins are emerging as viable candidates for subject identification. Previous work has shown that the salivary proteome of the least-abundant proteins may be helpful for subject identification, but more optimized techniques are needed. Among them is removing the most abundant proteins, such as salivary α-amylase. Starch treatment of saliva samples elicited the removal of this enzyme and that of glycosylated, low-molecular-weight proteins, proteases, and immunoglobulins, resulting in a saliva proteome profile enriched with a subset of proteins, allowing a more reliable and nuanced subject identification.


Subject(s)
Proteome , Starch , Humans , Proteome/metabolism , Starch/metabolism , Saliva , DNA , Forensic Sciences
18.
Dev Biol ; 486: 71-80, 2022 06.
Article in English | MEDLINE | ID: mdl-35353991

ABSTRACT

It is long-established that innervation-dependent production of neurotrophic factors is required for blastema formation and epimorphic regeneration of appendages in fish and amphibians. The regenerating mouse digit tip and the human fingertip are mammalian models for epimorphic regeneration, and limb denervation in mice inhibits this response. A complicating issue of limb denervation studies in terrestrial vertebrates is that the experimental models also cause severe paralysis therefore impairing appendage use and diminishing mechanical loading of the denervated tissues. Thus, it is unclear whether the limb denervation impairs regeneration via loss of neurotrophic signaling or loss of mechanical load, or both. Herein, we developed a novel surgical procedure in which individual digits were specifically denervated without impairing ambulation and mechanical loading. We demonstrate that digit specific denervation does not inhibit but attenuates digit tip regeneration, in part due to a delay in wound healing. However, treating denervated digits with a wound dressing that enhances closure results in a partial rescue of the regeneration response. Contrary to the current understanding of mammalian epimorphic regeneration, these studies demonstrate that mouse digit tip regeneration is not peripheral nerve dependent, an observation that should inform continued mammalian regenerative medicine approaches.


Subject(s)
Amputation, Surgical , Extremities , Animals , Denervation , Extremities/physiology , Mammals , Mice , Wound Healing/physiology
19.
J Neurophysiol ; 130(2): 345-352, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37435651

ABSTRACT

Dysregulation in the paraventricular nucleus of the hypothalamus (PVN) is associated with a variety of diseases including those related to obesity. Although most investigations have focused on molecular changes, structural alterations in PVN neurons can reveal underlying functional disruptions. Although electron microscopy (EM) can provide nanometer resolution of brain structures, an inherent limitation of traditional transmission EM is the single field of view nature of data collection. To overcome this, we used large-field-of-view high-resolution backscatter scanning electron microscopy (bSEM) of the PVN. By stitching high-resolution bSEM images, taken from normal chow and high-fat diet mice, we achieved interactive, zoomable maps that allow for low-magnification screening of the entire PVN and high-resolution analyses of ultrastructure at the level of the smallest cellular organelle. Using this approach, quantitative analysis across the PVN revealed marked electron-dense regions within neuronal nucleoplasm following high-fat diet feeding, with an increase in kurtosis, indicative of a shift away from a normal distribution. Furthermore, measures of skewness indicated a shift toward darker clustered electron-dense regions, potentially indicative of heterochromatin clusters. We further demonstrate the utility to map out healthy and altered neurons throughout the PVN and the ability to remotely perform bSEM imaging in situations that require social distancing, such as the COVID-19 pandemic. Collectively, these findings present an approach that allows for the precise placement of PVN cells within an overall structural and functional map of the PVN. Moreover, they suggest that obesity may disrupt PVN neuronal chromatin structure.NEW & NOTEWORTHY Paraventricular nucleus of the hypothalamus (PVN) alterations are linked to obesity-related conditions, but limited knowledge exists about neuroanatomical changes in this region. A large-field-of-view backscatter scanning electron microscopy (bSEM) method was used, which allowed the identification of up to 40 PVN neurons in individual samples. During obesity in mice, bSEM revealed changes in PVN neuronal nucleoplasm, possibly indicating chromatin clustering. This microscopy advancement offers valuable insights into neuroanatomy in both healthy and disease conditions.


Subject(s)
COVID-19 , Paraventricular Hypothalamic Nucleus , Mice , Animals , Humans , Microscopy, Electron, Scanning , Pandemics , Hypothalamus , Obesity , Diet, High-Fat/adverse effects
20.
PLoS Med ; 20(7): e1004247, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37410739

ABSTRACT

BACKGROUND: DNA methylation is a dynamic epigenetic mechanism that occurs at cytosine-phosphate-guanine dinucleotide (CpG) sites. Epigenome-wide association studies (EWAS) investigate the strength of association between methylation at individual CpG sites and health outcomes. Although blood methylation may act as a peripheral marker of common disease states, previous EWAS have typically focused only on individual conditions and have had limited power to discover disease-associated loci. This study examined the association of blood DNA methylation with the prevalence of 14 disease states and the incidence of 19 disease states in a single population of over 18,000 Scottish individuals. METHODS AND FINDINGS: DNA methylation was assayed at 752,722 CpG sites in whole-blood samples from 18,413 volunteers in the family-structured, population-based cohort study Generation Scotland (age range 18 to 99 years). EWAS tested for cross-sectional associations between baseline CpG methylation and 14 prevalent disease states, and for longitudinal associations between baseline CpG methylation and 19 incident disease states. Prevalent cases were self-reported on health questionnaires at the baseline. Incident cases were identified using linkage to Scottish primary (Read 2) and secondary (ICD-10) care records, and the censoring date was set to October 2020. The mean time-to-diagnosis ranged from 5.0 years (for chronic pain) to 11.7 years (for Coronavirus Disease 2019 (COVID-19) hospitalisation). The 19 disease states considered in this study were selected if they were present on the World Health Organisation's 10 leading causes of death and disease burden or included in baseline self-report questionnaires. EWAS models were adjusted for age at methylation typing, sex, estimated white blood cell composition, population structure, and 5 common lifestyle risk factors. A structured literature review was also conducted to identify existing EWAS for all 19 disease states tested. The MEDLINE, Embase, Web of Science, and preprint servers were searched to retrieve relevant articles indexed as of March 27, 2023. Fifty-four of approximately 2,000 indexed articles met our inclusion criteria: assayed blood-based DNA methylation, had >20 individuals in each comparison group, and examined one of the 19 conditions considered. First, we assessed whether the associations identified in our study were reported in previous studies. We identified 69 associations between CpGs and the prevalence of 4 conditions, of which 58 were newly described. The conditions were breast cancer, chronic kidney disease, ischemic heart disease, and type 2 diabetes mellitus. We also uncovered 64 CpGs that associated with the incidence of 2 disease states (COPD and type 2 diabetes), of which 56 were not reported in the surveyed literature. Second, we assessed replication across existing studies, which was defined as the reporting of at least 1 common site in >2 studies that examined the same condition. Only 6/19 disease states had evidence of such replication. The limitations of this study include the nonconsideration of medication data and a potential lack of generalizability to individuals that are not of Scottish and European ancestry. CONCLUSIONS: We discovered over 100 associations between blood methylation sites and common disease states, independently of major confounding risk factors, and a need for greater standardisation among EWAS on human disease.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Adolescent , Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Young Adult , Cohort Studies , CpG Islands/genetics , Cross-Sectional Studies , Diabetes Mellitus, Type 2/genetics , DNA Methylation , Epigenesis, Genetic , Epigenome , Genome-Wide Association Study/methods , Male , Female
SELECTION OF CITATIONS
SEARCH DETAIL