Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 354
Filter
Add more filters

Publication year range
1.
Cell ; 184(12): 3222-3241.e26, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34004146

ABSTRACT

The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.


Subject(s)
Hippocampus/cytology , Neocortex/cytology , Transcriptome/genetics , Animals , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Mice, Inbred C57BL , Mice, Transgenic
2.
Cell ; 179(3): 713-728.e17, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31626771

ABSTRACT

The ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) contains ∼4,000 neurons that project to multiple targets and control innate social behaviors including aggression and mounting. However, the number of cell types in VMHvl and their relationship to connectivity and behavioral function are unknown. We performed single-cell RNA sequencing using two independent platforms-SMART-seq (∼4,500 neurons) and 10x (∼78,000 neurons)-and investigated correspondence between transcriptomic identity and axonal projections or behavioral activation, respectively. Canonical correlation analysis (CCA) identified 17 transcriptomic types (T-types), including several sexually dimorphic clusters, the majority of which were validated by seqFISH. Immediate early gene analysis identified T-types exhibiting preferential responses to intruder males versus females but only rare examples of behavior-specific activation. Unexpectedly, many VMHvl T-types comprise a mixed population of neurons with different projection target preferences. Overall our analysis revealed that, surprisingly, few VMHvl T-types exhibit a clear correspondence with behavior-specific activation and connectivity.


Subject(s)
Hypothalamus/cytology , Neurons/classification , Social Behavior , Animals , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Hypothalamus/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Sexual Behavior, Animal , Single-Cell Analysis , Transcriptome
3.
Cell ; 174(2): 465-480.e22, 2018 07 12.
Article in English | MEDLINE | ID: mdl-30007418

ABSTRACT

Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.


Subject(s)
Brain/metabolism , Gene Knockout Techniques/methods , Genes, Reporter , Animals , Brain/cytology , Calcium/metabolism , Cell Line , In Situ Hybridization, Fluorescence , Light , Mice , Mice, Transgenic , Microscopy, Fluorescence , Neurons/metabolism , Optogenetics , RNA, Untranslated/genetics , Transgenes/genetics
4.
Nature ; 624(7991): 343-354, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092912

ABSTRACT

In mammalian brains, millions to billions of cells form complex interaction networks to enable a wide range of functions. The enormous diversity and intricate organization of cells have impeded our understanding of the molecular and cellular basis of brain function. Recent advances in spatially resolved single-cell transcriptomics have enabled systematic mapping of the spatial organization of molecularly defined cell types in complex tissues1-3, including several brain regions (for example, refs. 1-11). However, a comprehensive cell atlas of the whole brain is still missing. Here we imaged a panel of more than 1,100 genes in approximately 10 million cells across the entire adult mouse brains using multiplexed error-robust fluorescence in situ hybridization12 and performed spatially resolved, single-cell expression profiling at the whole-transcriptome scale by integrating multiplexed error-robust fluorescence in situ hybridization and single-cell RNA sequencing data. Using this approach, we generated a comprehensive cell atlas of more than 5,000 transcriptionally distinct cell clusters, belonging to more than 300 major cell types, in the whole mouse brain with high molecular and spatial resolution. Registration of this atlas to the mouse brain common coordinate framework allowed systematic quantifications of the cell-type composition and organization in individual brain regions. We further identified spatial modules characterized by distinct cell-type compositions and spatial gradients featuring gradual changes of cells. Finally, this high-resolution spatial map of cells, each with a transcriptome-wide expression profile, allowed us to infer cell-type-specific interactions between hundreds of cell-type pairs and predict molecular (ligand-receptor) basis and functional implications of these cell-cell interactions. These results provide rich insights into the molecular and cellular architecture of the brain and a foundation for functional investigations of neural circuits and their dysfunction in health and disease.


Subject(s)
Brain , Single-Cell Gene Expression Analysis , Animals , Mice , Brain/cytology , Cell Communication , Gene Expression Profiling , In Situ Hybridization, Fluorescence/methods , Ligands , Neural Pathways , Transcriptome
5.
Nature ; 624(7991): 366-377, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092913

ABSTRACT

Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated subclasses. We identified 2.6 million differentially methylated regions across the genome that represent potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide spatial transcriptomics data validated the association of spatial epigenetic diversity with transcription and improved the anatomical mapping of our epigenetic datasets. Furthermore, chromatin conformation diversities occurred in important neuronal genes and were highly associated with DNA methylation and transcription changes. Brain-wide cell-type comparisons enabled the construction of regulatory networks that incorporate transcription factors, regulatory elements and their potential downstream gene targets. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D multi-omic atlas and provides a valuable resource for comprehending the cellular-spatial and regulatory genome diversity of the mouse brain.


Subject(s)
Brain , DNA Methylation , Epigenome , Multiomics , Single-Cell Analysis , Animals , Mice , Brain/cytology , Brain/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Cytosine/metabolism , Datasets as Topic , Transcription Factors/metabolism , Transcription, Genetic
6.
Nature ; 624(7991): 403-414, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092914

ABSTRACT

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Subject(s)
Brain , Gene Expression Profiling , Neural Pathways , Neurons , Spinal Cord , Animals , Mice , Hypothalamus , Neurons/metabolism , Neuropeptides , Spinal Cord/cytology , Spinal Cord/metabolism , Brain/cytology , Brain/metabolism , Neurotransmitter Agents , Mesencephalon/cytology , Reticular Formation/cytology , Electrophysiology , Cerebellum/cytology , Cerebral Cortex/cytology
7.
Nature ; 624(7991): 378-389, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092917

ABSTRACT

Recent advances in single-cell technologies have led to the discovery of thousands of brain cell types; however, our understanding of the gene regulatory programs in these cell types is far from complete1-4. Here we report a comprehensive atlas of candidate cis-regulatory DNA elements (cCREs) in the adult mouse brain, generated by analysing chromatin accessibility in 2.3 million individual brain cells from 117 anatomical dissections. The atlas includes approximately 1 million cCREs and their chromatin accessibility across 1,482 distinct brain cell populations, adding over 446,000 cCREs to the most recent such annotation in the mouse genome. The mouse brain cCREs are moderately conserved in the human brain. The mouse-specific cCREs-specifically, those identified from a subset of cortical excitatory neurons-are strongly enriched for transposable elements, suggesting a potential role for transposable elements in the emergence of new regulatory programs and neuronal diversity. Finally, we infer the gene regulatory networks in over 260 subclasses of mouse brain cells and develop deep-learning models to predict the activities of gene regulatory elements in different brain cell types from the DNA sequence alone. Our results provide a resource for the analysis of cell-type-specific gene regulation programs in both mouse and human brains.


Subject(s)
Brain , Chromatin , Single-Cell Analysis , Animals , Humans , Mice , Brain/cytology , Brain/metabolism , Cerebral Cortex/cytology , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Deep Learning , DNA Transposable Elements/genetics , Gene Regulatory Networks/genetics , Neurons/metabolism
8.
Nature ; 624(7991): 355-365, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092919

ABSTRACT

Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.


Subject(s)
Brain , Epigenomics , Neural Pathways , Neurons , Animals , Mice , Amygdala , Brain/cytology , Brain/metabolism , Consensus Sequence , Datasets as Topic , Gene Expression Profiling , Hypothalamus/cytology , Mesencephalon/cytology , Neural Pathways/cytology , Neurons/metabolism , Neurotransmitter Agents/metabolism , Regulatory Sequences, Nucleic Acid , Rhombencephalon/cytology , Single-Cell Analysis , Thalamus/cytology , Transcription Factors/metabolism
9.
Cell ; 149(2): 483-96, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22500809

ABSTRACT

Although there have been major advances in elucidating the functional biology of the human brain, relatively little is known of its cellular and molecular organization. Here we report a large-scale characterization of the expression of ∼1,000 genes important for neural functions by in situ hybridization at a cellular resolution in visual and temporal cortices of adult human brains. These data reveal diverse gene expression patterns and remarkable conservation of each individual gene's expression among individuals (95%), cortical areas (84%), and between human and mouse (79%). A small but substantial number of genes (21%) exhibited species-differential expression. Distinct molecular signatures, comprised of genes both common between species and unique to each, were identified for each major cortical cell type. The data suggest that gene expression profile changes may contribute to differential cortical function across species, and in particular, a shift from corticosubcortical to more predominant corticocortical communications in the human brain.


Subject(s)
Gene Expression Profiling , Neocortex/metabolism , Temporal Lobe/metabolism , Visual Cortex/metabolism , Adult , Animals , Gene Expression Regulation , Humans , Mice , Neocortex/cytology , Neurons/metabolism , Species Specificity , Temporal Lobe/cytology , Visual Cortex/cytology
10.
Nature ; 598(7879): 195-199, 2021 10.
Article in English | MEDLINE | ID: mdl-34616073

ABSTRACT

Full-length SMART-seq1 single-cell RNA sequencing can be used to measure gene expression at isoform resolution, making possible the identification of specific isoform markers for different cell types. Used in conjunction with spatial RNA capture and gene-tagging methods, this enables the inference of spatially resolved isoform expression for different cell types. Here, in a comprehensive analysis of 6,160 mouse primary motor cortex cells assayed with SMART-seq, 280,327 cells assayed with MERFISH2 and 94,162 cells assayed with 10x Genomics sequencing3, we find examples of isoform specificity in cell types-including isoform shifts between cell types that are masked in gene-level analysis-as well as examples of transcriptional regulation. Additionally, we show that isoform specificity helps to refine cell types, and that a multi-platform analysis of single-cell transcriptomic data leveraging multiple measurements provides a comprehensive atlas of transcription in the mouse primary motor cortex that improves on the possibilities offered by any single technology.


Subject(s)
Gene Expression Profiling , In Situ Hybridization, Fluorescence , Motor Cortex/cytology , Neurons/classification , Single-Cell Analysis , Transcriptome , Animals , Atlases as Topic , Female , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Glutamates/metabolism , Male , Mice , Mice, Inbred C57BL , Motor Cortex/anatomy & histology , Neurons/cytology , Neurons/metabolism , Organ Specificity , Sequence Analysis
11.
Nature ; 573(7772): 61-68, 2019 09.
Article in English | MEDLINE | ID: mdl-31435019

ABSTRACT

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.


Subject(s)
Astrocytes/classification , Biological Evolution , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Neurons/classification , Adolescent , Adult , Aged , Animals , Astrocytes/cytology , Female , Humans , Male , Mice , Middle Aged , Neural Inhibition , Neurons/cytology , Principal Component Analysis , RNA-Seq , Single-Cell Analysis , Species Specificity , Transcriptome/genetics , Young Adult
12.
Nature ; 563(7729): 79-84, 2018 11.
Article in English | MEDLINE | ID: mdl-30382200

ABSTRACT

Activity in the motor cortex predicts movements, seconds before they are initiated. This preparatory activity has been observed across cortical layers, including in descending pyramidal tract neurons in layer 5. A key question is how preparatory activity is maintained without causing movement, and is ultimately converted to a motor command to trigger appropriate movements. Here, using single-cell transcriptional profiling and axonal reconstructions, we identify two types of pyramidal tract neuron. Both types project to several targets in the basal ganglia and brainstem. One type projects to thalamic regions that connect back to motor cortex; populations of these neurons produced early preparatory activity that persisted until the movement was initiated. The second type projects to motor centres in the medulla and mainly produced late preparatory activity and motor commands. These results indicate that two types of motor cortex output neurons have specialized roles in motor control.


Subject(s)
Efferent Pathways/cytology , Efferent Pathways/physiology , Motor Cortex/cytology , Motor Cortex/physiology , Movement/physiology , Animals , Basal Ganglia/cytology , Brain Stem/cytology , Glutamic Acid/metabolism , Medulla Oblongata/cytology , Mice , Neurons/metabolism , Pyramidal Cells/classification , Pyramidal Cells/physiology , Single-Cell Analysis , Transcriptome
13.
Nature ; 563(7729): 72-78, 2018 11.
Article in English | MEDLINE | ID: mdl-30382198

ABSTRACT

The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.


Subject(s)
Gene Expression Profiling , Neocortex/cytology , Neocortex/metabolism , Animals , Biomarkers/analysis , Female , GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Male , Mice , Motor Cortex/anatomy & histology , Motor Cortex/cytology , Motor Cortex/metabolism , Neocortex/anatomy & histology , Organ Specificity , Sequence Analysis, RNA , Single-Cell Analysis , Visual Cortex/anatomy & histology , Visual Cortex/cytology , Visual Cortex/metabolism
14.
Clin Infect Dis ; 76(9): 1646-1654, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36660819

ABSTRACT

BACKGROUND: Cabotegravir (CAB) + rilpivirine (RPV) dosed intramuscularly monthly or every 2 months is a complete, long-acting (LA) regimen for the maintenance of HIV-1 virologic suppression. Here, we report the antiretroviral therapy as long acting suppression (ATLAS)-2M study week 152 results. METHODS: ATLAS-2M is a phase 3b, randomized, multicenter study assessing the efficacy and safety of CAB+RPV LA every 8 weeks (Q8W) versus every 4 weeks (Q4W). Virologically suppressed (HIV-1 RNA <50 copies/mL) individuals were randomized to receive CAB+RPV LA Q8W or Q4W. Endpoints included the proportion of participants with plasma HIV-1 RNA ≥50 copies/mL and <50 copies/mL, incidence of confirmed virologic failure (CVF; 2 consecutive measurements ≥200 copies/mL), safety, and tolerability. RESULTS: A total of 1045 participants received CAB+RPV LA (Q8W, n = 522; Q4W, n = 523). CAB+RPV LA Q8W demonstrated noninferior efficacy versus Q4W dosing, with 2.7% (n = 14) and 1.0% (n = 5) of participants having HIV-1 RNA ≥50 copies/mL, respectively, with adjusted treatment difference being 1.7% (95% CI: 0.1-3.3%), meeting the 4% noninferiority threshold. At week 152, 87% of participants maintained HIV-1 RNA <50 copies/mL (Q8W, 87% [n = 456]; Q4W, 86% [n = 449]). Overall, 12 (2.3%) participants in the Q8W arm and 2 (0.4%) in the Q4W arm had CVF. Eight and 10 participants with CVF had treatment-emergent, resistance-associated mutations to RPV and integrase inhibitors, respectively. Safety profiles were comparable, with no new safety signals observed since week 48. CONCLUSIONS: These data demonstrate virologic suppression durability with CAB+RPV LA Q8W or Q4W for ∼3 years and confirm long-term efficacy, safety, and tolerability of CAB+RPV LA as a complete regimen to maintain HIV-1 virologic suppression.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Adult , Humans , Anti-HIV Agents/adverse effects , Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , HIV Seropositivity/drug therapy , HIV-1/genetics , Rilpivirine/adverse effects , RNA, Viral , Viral Load
15.
Lancet ; 399(10337): 1779-1789, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35378077

ABSTRACT

BACKGROUND: Oral pre-exposure prophylaxis has been introduced in more than 70 countries, including many in sub-Saharan Africa, but women experience considerable barriers to daily pill-taking, such as stigma, judgement, and the fear of violence. Safe and effective long-acting agents for HIV prevention are needed for women. We aimed to evaluate the safety and efficacy of injectable cabotegravir compared with daily oral tenofovir diphosphate plus emtricitabine (TDF-FTC) for HIV prevention in HIV-uninfected women. METHODS: HPTN 084 was a phase 3, randomised, double-blind, double-dummy, active-controlled, superiority trial in 20 clinical research sites in seven countries in sub-Saharan Africa. Participants were eligible for enrolment if they were assigned female sex at birth, were aged 18-45 years, reported at least two episodes of vaginal intercourse in the previous 30 days, were at risk of HIV infection based on an HIV risk score, and agreed to use a long-acting reversible contraceptive method. Participants were randomly assigned (1:1) to either active cabotegravir with TDF-FTC placebo (cabotegravir group) or active TDF-FTC with cabotegravir placebo (TDF-FTC group). Study staff and participants were masked to study group allocation, with the exception of the site pharmacist who was responsible for study product preparation. Participants were prescribed 5 weeks of daily oral product followed by intramuscular injections every 8 weeks after an initial 4-week interval load, alongside daily oral pills. Participants who discontinued injections were offered open-label daily TDF-FTC for 48 weeks. The primary endpoints of the study were incident HIV infection in the intention-to-treat population, and clinical and laboratory events that were grade 2 or higher in all women who had received at least one dose of study product. This study is registered with ClinicalTrials.gov, NCT03164564. FINDINGS: From Nov 27, 2017, to Nov 4, 2020, we enrolled 3224 participants (1614 in the cabotegravir group and 1610 in the TDF-FTC group). Median age was 25 years (IQR 22-30); 1755 (54·7%) of 3209 had two or more partners in the preceding month. 40 incident infections were observed over 3898 person-years (HIV incidence 1·0% [95% CI 0·73-1·40]); four in the cabotegravir group (HIV incidence 0·2 cases per 100 person-years [0·06-0·52]) and 36 in the TDF-FTC group (1·85 cases per 100 person-years [1·3-2·57]; hazard ratio 0·12 [0·05-0·31]; p<0·0001; risk difference -1·6% [-1·0% to -2·3%]. In a random subset of 405 TDF-FTC participants, 812 (42·1%) of 1929 plasma samples had tenofovir concentrations consistent with daily use. Injection coverage was 93% of the total number of person-years. Adverse event rates were similar across both groups, apart from injection site reactions, which were more frequent in the cabotegravir group than in the TDF-FTC group (577 [38·0%] of 1519 vs 162 [10·7%] of 1516]) but did not result in injection discontinuation. Confirmed pregnancy incidence was 1·3 per 100 person-years (0·9-1·7); no congenital birth anomalies were reported. INTERPRETATION: Although both products for HIV prevention were generally safe, well tolerated, and effective, cabotegravir was superior to TDF-FTC in preventing HIV infection in women. FUNDING: National Institute of Allergy and Infectious Diseases, ViiV Healthcare, and the Bill & Melinda Gates Foundation. Additional support was provided through the National Institute of Mental Health, the National Institute on Drug Abuse, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development. ViiV Healthcare and Gilead Sciences provided pharmaceutical support.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Adult , Child , Diketopiperazines , Emtricitabine/therapeutic use , Female , HIV Infections/chemically induced , HIV Infections/epidemiology , HIV Infections/prevention & control , HIV Seropositivity/drug therapy , Humans , Infant, Newborn , Pregnancy , Pyridones/therapeutic use
16.
N Engl J Med ; 382(12): 1124-1135, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32130806

ABSTRACT

BACKGROUND: Long-acting injectable regimens may simplify therapy for patients with human immunodeficiency virus type 1 (HIV-1) infection. METHODS: We conducted a phase 3, randomized, open-label trial in which adults with HIV-1 infection who had not previously received antiretroviral therapy were given 20 weeks of daily oral induction therapy with dolutegravir-abacavir-lamivudine. Participants who had an HIV-1 RNA level of less than 50 copies per milliliter after 16 weeks were randomly assigned (1:1) to continue the current oral therapy or switch to oral cabotegravir plus rilpivirine for 1 month followed by monthly injections of long-acting cabotegravir plus rilpivirine. The primary end point was the percentage of participants who had an HIV-1 RNA level of 50 copies per milliliter or higher at week 48 (Food and Drug Administration snapshot algorithm). RESULTS: At week 48, an HIV-1 RNA level of 50 copies per milliliter or higher was found in 6 of 283 participants (2.1%) who received long-acting therapy and in 7 of 283 (2.5%) who received oral therapy (adjusted difference, -0.4 percentage points; 95% confidence interval [CI], -2.8 to 2.1), a result that met the criterion for noninferiority for the primary end point (margin, 6 percentage points). An HIV-1 RNA level of less than 50 copies per milliliter at week 48 was found in 93.6% who received long-acting therapy and in 93.3% who received oral therapy (adjusted difference, 0.4 percentage points; 95% CI, -3.7 to 4.5), a result that met the criterion for noninferiority for this end point (margin, -10 percentage points). Of the participants who received long-acting therapy, 86% reported injection-site reactions (median duration, 3 days; mild or moderate severity, 99% of cases); 4 participants withdrew from the trial for injection-related reasons. Grade 3 or higher adverse events and events that met liver-related stopping criteria occurred in 11% and 2%, respectively, who received long-acting therapy and in 4% and 1% who received oral therapy. Treatment satisfaction increased after participants switched to long-acting therapy; 91% preferred long-acting therapy at week 48. CONCLUSIONS: Therapy with long-acting cabotegravir plus rilpivirine was noninferior to oral therapy with dolutegravir-abacavir-lamivudine with regard to maintaining HIV-1 suppression. Injection-site reactions were common. (Funded by ViiV Healthcare and Janssen; FLAIR ClinicalTrials.gov number, NCT02938520.).


Subject(s)
Anti-HIV Agents/administration & dosage , HIV Infections/drug therapy , HIV-1/isolation & purification , Pyridones/administration & dosage , Rilpivirine/administration & dosage , Administration, Oral , Adult , Anti-HIV Agents/adverse effects , Anti-HIV Agents/blood , Anti-Retroviral Agents/therapeutic use , CD4 Lymphocyte Count , Drug Resistance, Viral/genetics , Drug Therapy, Combination , Female , HIV-1/genetics , Humans , Induction Chemotherapy , Injections, Intramuscular , Maintenance Chemotherapy , Male , Middle Aged , Mutation , Patient Reported Outcome Measures , Pyridones/adverse effects , Pyridones/blood , RNA, Viral/blood , Rilpivirine/adverse effects , Rilpivirine/blood , Viral Load
17.
N Engl J Med ; 382(12): 1112-1123, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32130809

ABSTRACT

BACKGROUND: Simplified regimens for the treatment of human immunodeficiency virus type 1 (HIV-1) infection may increase patient satisfaction and facilitate adherence. METHODS: In this phase 3, open-label, multicenter, noninferiority trial involving patients who had had plasma HIV-1 RNA levels of less than 50 copies per milliliter for at least 6 months while taking standard oral antiretroviral therapy, we randomly assigned participants (1:1) to either continue their oral therapy or switch to monthly intramuscular injections of long-acting cabotegravir, an HIV-1 integrase strand-transfer inhibitor, and long-acting rilpivirine, a nonnucleoside reverse-transcriptase inhibitor. The primary end point was the percentage of participants with an HIV-1 RNA level of 50 copies per milliliter or higher at week 48, determined with the use of the Food and Drug Administration snapshot algorithm. RESULTS: Treatment was initiated in 308 participants per group. At week 48, HIV-1 RNA levels of 50 copies per milliliter or higher were found in 5 participants (1.6%) receiving long-acting therapy and in 3 (1.0%) receiving oral therapy (adjusted difference, 0.6 percentage points; 95% confidence interval [CI], -1.2 to 2.5), a result that met the criterion for noninferiority for the primary end point (noninferiority margin, 6 percentage points). An HIV-1 RNA level of less than 50 copies per milliliter at week 48 was found in 92.5% of participants receiving long-acting therapy and in 95.5% of those receiving oral therapy (adjusted difference, -3.0 percentage points; 95% CI, -6.7 to 0.7), a result that met the criterion for noninferiority for this end point (noninferiority margin, -10 percentage points). Virologic failure was confirmed in 3 participants who received long-acting therapy and 4 participants who received oral therapy. Adverse events were more common in the long-acting-therapy group and included injection-site pain, which occurred in 231 recipients (75%) of long-acting therapy and was mild or moderate in most cases; 1% withdrew because of this event. Serious adverse events were reported in no more than 5% of participants in each group. CONCLUSIONS: Monthly injections of long-acting cabotegravir and rilpivirine were noninferior to standard oral therapy for maintaining HIV-1 suppression. Injection-related adverse events were common but only infrequently led to medication withdrawal. (Funded by ViiV Healthcare and Janssen; ATLAS ClinicalTrials.gov number, NCT02951052.).


Subject(s)
Anti-HIV Agents/administration & dosage , HIV Infections/drug therapy , HIV-1/isolation & purification , Pyridones/administration & dosage , Rilpivirine/administration & dosage , Administration, Oral , Adult , Anti-HIV Agents/adverse effects , Anti-HIV Agents/blood , Anti-Retroviral Agents/therapeutic use , CD4 Lymphocyte Count , Drug Resistance, Viral/genetics , Drug Therapy, Combination , Female , HIV-1/genetics , Humans , Injections, Intramuscular/adverse effects , Maintenance Chemotherapy , Male , Middle Aged , Mutation , Patient Reported Outcome Measures , Pyridones/adverse effects , Pyridones/blood , RNA, Viral/blood , Rilpivirine/adverse effects , Rilpivirine/blood , Viral Load
18.
Surg Endosc ; 37(3): 1976-1984, 2023 03.
Article in English | MEDLINE | ID: mdl-36271060

ABSTRACT

BACKGROUND: Previously, we reported short-term improvements in auditory attention, oromotor processing speed, and executive function during the active weight loss phase following bariatric surgery that persisted out to 3 months. In this study, our aims were to investigate the relationship between weight loss and cognitive performance in these patients 1 year following vertical sleeve gastrectomy (VSG) and Roux-en Y gastric bypass (RYGB) surgery and to determine whether preoperative cognitive performance predicted weight loss. METHODS: Adult women ages 18-55 approved for bariatric surgery completed a cognitive battery prior to and at 2, 12, 24, and 52 weeks following VSG (N = 17) or RYGB (N = 18). Scores from each task were assigned to one of the following cognitive domains: auditory attention, processing speed, memory, and executive functioning. Weight loss and cognitive scores for each domain were calculated and compared between cohorts. RESULTS: RYGB surgery resulted in greater weight loss at 1-year follow-up relative to VSG. Both VSG and RYGB procedures resulted in improved performance on different measures of auditory attention and both surgery groups improved across all processing speed tasks. Within the executive function domain, both groups showed improvements, but only the RYGB procedure resulted in improved performance in the Trail Making Test. Baseline auditory attention and memory performance predicted weight loss at 1 year following RYGB but not VSG surgery. Controlling for baseline cognitive performance, percent total weight loss predicted auditory attention at 1 year following RYGB but not VSG surgery. CONCLUSIONS: Bariatric surgery type may result in selective improvements in cognition during the first year following surgery. Presurgical cognitive performance as well as surgery type appears to influence weight loss outcomes.


Subject(s)
Bariatric Surgery , Gastric Bypass , Obesity, Morbid , Adult , Humans , Female , Adolescent , Young Adult , Middle Aged , Weight Loss , Gastric Bypass/methods , Gastrectomy/methods , Cognition , Obesity, Morbid/surgery , Obesity, Morbid/psychology
19.
JAMA ; 330(14): 1337-1347, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37815567

ABSTRACT

Importance: Universal nasal mupirocin plus chlorhexidine gluconate (CHG) bathing in intensive care units (ICUs) prevents methicillin-resistant Staphylococcus aureus (MRSA) infections and all-cause bloodstream infections. Antibiotic resistance to mupirocin has raised questions about whether an antiseptic could be advantageous for ICU decolonization. Objective: To compare the effectiveness of iodophor vs mupirocin for universal ICU nasal decolonization in combination with CHG bathing. Design, Setting, and Participants: Two-group noninferiority, pragmatic, cluster-randomized trial conducted in US community hospitals, all of which used mupirocin-CHG for universal decolonization in ICUs at baseline. Adult ICU patients in 137 randomized hospitals during baseline (May 1, 2015-April 30, 2017) and intervention (November 1, 2017-April 30, 2019) were included. Intervention: Universal decolonization involving switching to iodophor-CHG (intervention) or continuing mupirocin-CHG (baseline). Main Outcomes and Measures: ICU-attributable S aureus clinical cultures (primary outcome), MRSA clinical cultures, and all-cause bloodstream infections were evaluated using proportional hazard models to assess differences from baseline to intervention periods between the strategies. Results were also compared with a 2009-2011 trial of mupirocin-CHG vs no decolonization in the same hospital network. The prespecified noninferiority margin for the primary outcome was 10%. Results: Among the 801 668 admissions in 233 ICUs, the participants' mean (SD) age was 63.4 (17.2) years, 46.3% were female, and the mean (SD) ICU length of stay was 4.8 (4.7) days. Hazard ratios (HRs) for S aureus clinical isolates in the intervention vs baseline periods were 1.17 for iodophor-CHG (raw rate: 5.0 vs 4.3/1000 ICU-attributable days) and 0.99 for mupirocin-CHG (raw rate: 4.1 vs 4.0/1000 ICU-attributable days) (HR difference in differences significantly lower by 18.4% [95% CI, 10.7%-26.6%] for mupirocin-CHG, P < .001). For MRSA clinical cultures, HRs were 1.13 for iodophor-CHG (raw rate: 2.3 vs 2.1/1000 ICU-attributable days) and 0.99 for mupirocin-CHG (raw rate: 2.0 vs 2.0/1000 ICU-attributable days) (HR difference in differences significantly lower by 14.1% [95% CI, 3.7%-25.5%] for mupirocin-CHG, P = .007). For all-pathogen bloodstream infections, HRs were 1.00 (2.7 vs 2.7/1000) for iodophor-CHG and 1.01 (2.6 vs 2.6/1000) for mupirocin-CHG (nonsignificant HR difference in differences, -0.9% [95% CI, -9.0% to 8.0%]; P = .84). Compared with the 2009-2011 trial, the 30-day relative reduction in hazards in the mupirocin-CHG group relative to no decolonization (2009-2011 trial) were as follows: S aureus clinical cultures (current trial: 48.1% [95% CI, 35.6%-60.1%]; 2009-2011 trial: 58.8% [95% CI, 47.5%-70.7%]) and bloodstream infection rates (current trial: 70.4% [95% CI, 62.9%-77.8%]; 2009-2011 trial: 60.1% [95% CI, 49.1%-70.7%]). Conclusions and Relevance: Nasal iodophor antiseptic did not meet criteria to be considered noninferior to nasal mupirocin antibiotic for the outcome of S aureus clinical cultures in adult ICU patients in the context of daily CHG bathing. In addition, the results were consistent with nasal iodophor being inferior to nasal mupirocin. Trial Registration: ClinicalTrials.gov Identifier: NCT03140423.


Subject(s)
Anti-Infective Agents , Baths , Chlorhexidine , Iodophors , Mupirocin , Sepsis , Staphylococcal Infections , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Administration, Intranasal , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/therapeutic use , Anti-Infective Agents, Local/therapeutic use , Baths/methods , Chlorhexidine/administration & dosage , Chlorhexidine/therapeutic use , Cross Infection/epidemiology , Cross Infection/microbiology , Cross Infection/prevention & control , Intensive Care Units/statistics & numerical data , Iodophors/administration & dosage , Iodophors/therapeutic use , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Mupirocin/administration & dosage , Mupirocin/therapeutic use , Pragmatic Clinical Trials as Topic , Sepsis/epidemiology , Sepsis/microbiology , Sepsis/prevention & control , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/prevention & control , Staphylococcus aureus/isolation & purification , United States/epidemiology
20.
Clin Infect Dis ; 75(6): 975-986, 2022 09 29.
Article in English | MEDLINE | ID: mdl-35079789

ABSTRACT

BACKGROUND: Switching to dolutegravir/lamivudine (DTG/3TC) was noninferior to continuing tenofovir alafenamide (TAF)-based regimens for maintaining virologic suppression at week 48 of the TANGO study. Here we present week 144 outcomes (efficacy, safety, weight, and biomarkers). METHODS: TANGO is a randomized (1:1, stratified by baseline third agent class), open-label, noninferiority phase 3 study. Virologically suppressed (>6 months) adults with human immunodeficiency virus type 1 (HIV-1) switched to once-daily DTG/3TC or continued TAF-based regimens. RESULTS: A total of 741 participants received study treatment (DTG/3TC, n = 369; TAF-based regimen, n = 372). At week 144, the proportion of participants with an HIV-1 RNA level ≥50 copies/mL (primary end point, Snapshot; intention-to-treat-exposed population) after switching to DTG/3TC was 0.3% (1 of 369) versus 1.3% (5 of 372) for those continuing TAF-based regimens, demonstrating noninferiority (adjusted treatment difference, -1.1 [95% confidence interval, -2.4 to .2), with DTG/3TC favored in the per-protocol analysis (adjusted treatment difference, -1.1 [-2.3 to -.0]; P = .04). Few participants met confirmed virologic withdrawal criteria (none in the DTG/3TC and 3 in the TAF-based regimen group), with no resistance observed. Drug-related adverse events were more frequent with DTG/3TC (15%; leading to discontinuation in 4%) than TAF-based regimens (5%; leading to discontinuation in 1%) through week 144, but rates were comparable after week 48 (4%; leading to discontinuation in 1% in both groups). Changes from baseline in lipid values generally favored DTG/3TC; no clinical impact on renal function and comparable changes in inflammatory and bone biomarkers across groups were observed. CONCLUSIONS: Switching to DTG/3TC demonstrated noninferior and durable efficacy compared with continuing TAF-based regimens in treatment-experienced adults with HIV-1, with good safety and tolerability, and no resistance through 144 weeks.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Adenine/adverse effects , Adult , Alanine , Anti-HIV Agents/adverse effects , HIV Infections/drug therapy , HIV-1/genetics , Heterocyclic Compounds, 3-Ring/adverse effects , Humans , Lamivudine/adverse effects , Lipids , Oxazines , Piperazines , Pyridones , RNA/therapeutic use , Tenofovir/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL