Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Haematologica ; 109(2): 401-410, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37534515

ABSTRACT

The presence of measurable residual disease (MRD) is strongly associated with treatment outcomes in acute myeloid leukemia (AML). Despite the correlation with clinical outcomes, MRD assessment has yet to be standardized or routinely incorporated into clinical trials and discrepancies have been observed between different techniques for MRD assessment. In 62 patients with AML, aged 18-60 years, in first complete remission after intensive induction therapy on the randomized phase III SWOG-S0106 clinical trial (clinicaltrials gov. Identifier: NCT00085709), MRD detection by centralized, high-quality multiparametric flow cytometry was compared with a 29-gene panel utilizing duplex sequencing (DS), an ultrasensitive next-generation sequencing method that generates double-stranded consensus sequences to reduce false positive errors. MRD as defined by DS was observed in 22 (35%) patients and was strongly associated with higher rates of relapse (68% vs. 13%; hazard ratio [HR] =8.8; 95% confidence interval [CI]: 3.2-24.5; P<0.001) and decreased survival (32% vs. 82%; HR=5.6; 95% CI: 2.3-13.8; P<0.001) at 5 years. DS MRD strongly outperformed multiparametric flow cytometry MRD, which was observed in ten (16%) patients and marginally associated with higher rates of relapse (50% vs. 30%; HR=2.4; 95% CI: 0.9-6.7; P=0.087) and decreased survival (40% vs. 68%; HR=2.5; 95% CI: 1.0-6.3; P=0.059) at 5 years. Furthermore, the prognostic significance of DS MRD status at the time of remission for subsequent relapse was similar on both randomized arms of the trial. These findings suggest that next-generation sequencing-based AML MRD testing is a powerful tool that could be developed for use in patient management and for early anti-leukemic treatment assessment in clinical trials.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Adult , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Treatment Outcome , Prognosis , Recurrence , Neoplasm, Residual/diagnosis , Flow Cytometry/methods
2.
Proc Natl Acad Sci U S A ; 117(9): 5039-5048, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32071217

ABSTRACT

Thrombin, a procoagulant protease, cleaves and activates protease-activated receptor-1 (PAR1) to promote inflammatory responses and endothelial dysfunction. In contrast, activated protein C (APC), an anticoagulant protease, activates PAR1 through a distinct cleavage site and promotes anti-inflammatory responses, prosurvival, and endothelial barrier stabilization. The distinct tethered ligands formed through cleavage of PAR1 by thrombin versus APC result in unique active receptor conformations that bias PAR1 signaling. Despite progress in understanding PAR1 biased signaling, the proteins and pathways utilized by thrombin versus APC signaling to induce opposing cellular functions are largely unknown. Here, we report the global phosphoproteome induced by thrombin and APC signaling in endothelial cells with the quantification of 11,266 unique phosphopeptides using multiplexed quantitative mass spectrometry. Our results reveal unique dynamic phosphoproteome profiles of thrombin and APC signaling, an enrichment of associated biological functions, including key modulators of endothelial barrier function, regulators of gene transcription, and specific kinases predicted to mediate PAR1 biased signaling. Using small interfering RNA to deplete a subset of phosphorylated proteins not previously linked to thrombin or APC signaling, a function for afadin and adducin-1 actin binding proteins in thrombin-induced endothelial barrier disruption is unveiled. Afadin depletion resulted in enhanced thrombin-promoted barrier permeability, whereas adducin-1 depletion completely ablated thrombin-induced barrier disruption without compromising p38 signaling. However, loss of adducin-1 blocked APC-induced Akt signaling. These studies define distinct thrombin and APC dynamic signaling profiles and a rich array of proteins and biological pathways that engender PAR1 biased signaling in endothelial cells.


Subject(s)
Proteomics , Receptor, PAR-1/metabolism , Signal Transduction , Thrombin/metabolism , Calmodulin-Binding Proteins , Carrier Proteins , Endothelial Cells/metabolism , Humans , Microfilament Proteins , Phosphorylation , Protein C Inhibitor/metabolism
3.
J Biol Chem ; 292(33): 13867-13878, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28652403

ABSTRACT

Vascular inflammation and thrombosis require the concerted actions of several different agonists, many of which act on G protein-coupled receptors (GPCRs). GPCR dimerization is a well-established phenomenon that can alter protomer function. In platelets and other cell types, protease-activated receptor-4 (PAR4) has been shown to dimerize with the purinergic receptor P2Y12 to coordinate ß-arrestin-mediated Akt signaling, an important mediator of integrin activation. However, the mechanism by which the PAR4-P2Y12 dimer controls ß-arrestin-dependent Akt signaling is not known. We now report that PAR4 and P2Y12 heterodimer internalization is required for ß-arrestin recruitment to endosomes and Akt signaling. Using bioluminescence resonance energy transfer, immunofluorescence microscopy, and co-immunoprecipitation in cells expressing receptors exogenously and endogenously, we demonstrate that PAR4 and P2Y12 specifically interact and form dimers expressed at the cell surface. We also found that activation of PAR4 but not of P2Y12 drives internalization of the PAR4-P2Y12 heterodimer. Remarkably, activated PAR4 internalization was required for recruitment of ß-arrestin to endocytic vesicles, which was dependent on co-expression of P2Y12. Interestingly, stimulation of the PAR4-P2Y12 heterodimer promotes ß-arrestin and Akt co-localization to intracellular vesicles. Moreover, activated PAR4-P2Y12 internalization is required for sustained Akt activation. Thus, internalization of the PAR4-P2Y12 heterodimer is necessary for ß-arrestin recruitment to endosomes and Akt signaling and lays the foundation for examining whether blockade of PAR4 internalization reduces integrin and platelet activation.


Subject(s)
Endocytosis , Proto-Oncogene Proteins c-akt/agonists , Receptors, Purinergic P2Y12/metabolism , Receptors, Thrombin/agonists , Signal Transduction , beta-Arrestin 2/metabolism , Amino Acid Substitution , Animals , Bioluminescence Resonance Energy Transfer Techniques , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Endosomes/metabolism , Humans , Immunoprecipitation , Microscopy, Fluorescence , Protein Multimerization , Protein Transport , Proto-Oncogene Proteins c-akt/metabolism , Receptor, PAR-1/agonists , Receptor, PAR-1/chemistry , Receptor, PAR-1/genetics , Receptor, PAR-1/metabolism , Receptors, Purinergic P2Y12/chemistry , Receptors, Purinergic P2Y12/genetics , Receptors, Thrombin/chemistry , Receptors, Thrombin/genetics , Receptors, Thrombin/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , beta-Arrestin 2/chemistry
4.
Proc Natl Acad Sci U S A ; 112(27): E3600-8, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26100877

ABSTRACT

Protease-activated receptor-1 (PAR1) is a G-protein-coupled receptor (GPCR) for the coagulant protease thrombin. Similar to other GPCRs, PAR1 is promiscuous and couples to multiple heterotrimeric G-protein subtypes in the same cell and promotes diverse cellular responses. The molecular mechanism by which activation of a given GPCR with the same ligand permits coupling to multiple G-protein subtypes is unclear. Here, we report that N-linked glycosylation of PAR1 at extracellular loop 2 (ECL2) controls G12/13 versus Gq coupling specificity in response to thrombin stimulation. A PAR1 mutant deficient in glycosylation at ECL2 was more effective at stimulating Gq-mediated phosphoinositide signaling compared with glycosylated wildtype receptor. In contrast, wildtype PAR1 displayed a greater efficacy at G12/13-dependent RhoA activation compared with mutant receptor lacking glycosylation at ECL2. Endogenous PAR1 rendered deficient in glycosylation using tunicamycin, a glycoprotein synthesis inhibitor, also exhibited increased PI signaling and diminished RhoA activation opposite to native receptor. Remarkably, PAR1 wildtype and glycosylation-deficient mutant were equally effective at coupling to Gi and ß-arrestin-1. Consistent with preferential G12/13 coupling, thrombin-stimulated PAR1 wildtype strongly induced RhoA-mediated stress fiber formation compared with mutant receptor. In striking contrast, glycosylation-deficient PAR1 was more effective at increasing cellular proliferation, associated with Gq signaling, than wildtype receptor. These studies suggest that N-linked glycosylation at ECL2 contributes to the stabilization of an active PAR1 state that preferentially couples to G12/13 versus Gq and defines a previously unidentified function for N-linked glycosylation of GPCRs in regulating G-protein signaling bias.


Subject(s)
GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Receptor, PAR-1/metabolism , Signal Transduction , Algorithms , Animals , Binding Sites/genetics , COS Cells , Chlorocebus aethiops , Fibroblasts/drug effects , Fibroblasts/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Glycosylation , HeLa Cells , Humans , Immunoblotting , Mice, Knockout , Mutation , Protein Binding/drug effects , RNA Interference , Receptor, PAR-1/genetics , Thrombin/pharmacology , Thymidine/metabolism , rhoA GTP-Binding Protein/metabolism
5.
J Biol Chem ; 291(35): 18453-64, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27402844

ABSTRACT

Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of ß-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of ß-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation.


Subject(s)
Adaptor Protein Complex 2/metabolism , MAP Kinase Signaling System/physiology , Megakaryocytes/metabolism , Receptors, Thrombin/metabolism , beta-Arrestins/metabolism , Adaptor Protein Complex 2/genetics , Amino Acid Motifs , Animals , HeLa Cells , Humans , Megakaryocytes/cytology , Mice , Protein Transport/physiology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Thrombin/genetics , beta-Arrestins/genetics
6.
Pharmacol Rev ; 65(4): 1198-213, 2013.
Article in English | MEDLINE | ID: mdl-24064459

ABSTRACT

Proteinase-activated receptors (PARs) are G protein-coupled receptors that transmit cellular responses to extracellular proteases and have important functions in vascular physiology, development, inflammation, and cancer progression. The established paradigm for PAR activation involves proteolytic cleavage of the extracellular N terminus, which reveals a new N terminus that functions as a tethered ligand by binding intramolecularly to the receptor to trigger transmembrane signaling. Most cells express more than one PAR, which can influence the mode of PAR activation and signaling. Clear examples include murine PAR3 cofactoring of PAR4 and transactivation of PAR2 by PAR1. Thrombin binds to and cleaves murine PAR3, which facilitates PAR4 cleavage and activation. This process is essential for thrombin signaling and platelet activation, since murine PAR3 cannot signal alone. Although PAR1 and PAR4 are both competent to signal, PAR1 is able to act as a cofactor for PAR4, facilitating more rapid cleavage and activation by thrombin. PAR1 can also facilitate PAR2 activation through a different mechanism. Cleavage of the PAR1 N terminus by thrombin generates a tethered ligand domain that can bind intermolecularly to PAR2 to activate signaling. Thus, PARs can regulate each other's activity by localizing thrombin when in complex with PAR3 and PAR4 or by cleaved PAR1, providing its tethered ligand domain for PAR2 activation. The ability of PARs to cofactor or transactivate other PARs would necessitate that the two receptors be in close proximity, likely in the form of a heterodimer. Here, we discuss the cofactoring and dimerization of PARs and the functional consequences on signaling.


Subject(s)
Receptors, Proteinase-Activated/metabolism , Animals , Humans , Protein Multimerization , Receptors, Proteinase-Activated/chemistry , Signal Transduction
7.
J Nat Prod ; 78(3): 476-85, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25689568

ABSTRACT

The first 23-step total synthesis of the cyclodepsipeptide dolastatin 16 (1) has been achieved. Synthesis of the dolaphenvaline and dolamethylleuine amino acid units using simplified methods improved the overall efficiency. The formation of the 25-membered macrocycle employing lactonization with 2-methyl-6-nitrobenzoic anhydride completed a key step in the synthesis. Regrettably, the synthetic dolastatin 16 (1), while otherwise identical (by X-ray crystal structure and spectral analyses) with the natural product, did not reproduce the powerful (nanomolar) cancer cell growth inhibition displayed by the natural isolate. Presumably this result can be attributed to conformation(s) of the synthetic dolastatin 16 (1) or to a chemically undetected component isolated with the natural product.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Depsipeptides/chemical synthesis , Depsipeptides/pharmacology , Anhydrides/chemistry , Antineoplastic Agents/chemistry , Depsipeptides/chemistry , Drug Screening Assays, Antitumor , Humans , Molecular Conformation , Molecular Structure , Nitrobenzoates/chemistry , Nuclear Magnetic Resonance, Biomolecular , Tumor Cells, Cultured
8.
Front Genet ; 14: 1246904, 2023.
Article in English | MEDLINE | ID: mdl-38234999

ABSTRACT

Common bean (bean) is one of the most important legume crops, and mapping genes for yield and yield-related traits is essential for its improvement. However, yield is a complex trait that is typically controlled by many loci in crop genomes. The objective of this research was to identify regions in the bean genome associated with yield and a number of yield-related traits using a collection of 121 diverse bean genotypes with different yields. The beans were evaluated in replicated trials at two locations, over two years. Significant variation among genotypes was identified for all traits analyzed in the four environments. The collection was genotyped with the BARCBean6K_3 chip (5,398 SNPs), two yield/antiyield gene-based markers, and seven markers previously associated with resistance to common bacterial blight (CBB), including a Niemann-Pick polymorphism (NPP) gene-based marker. Over 90% of the single-nucleotide polymorphisms (SNPs) were polymorphic and separated the panel into two main groups of small-seeded and large-seeded beans, reflecting their Mesoamerican and Andean origins. Thirty-nine significant marker-trait associations (MTAs) were identified between 31 SNPs and 15 analyzed traits on all 11 bean chromosomes. Some of these MTAs confirmed genome regions previously associated with the yield and yield-related traits in bean, but a number of associations were not reported previously, especially those with derived traits. Over 600 candidate genes with different functional annotations were identified for the analyzed traits in the 200-Kb region centered on significant SNPs. Fourteen SNPs were identified within the gene model sequences, and five additional SNPs significantly associated with five different traits were located at less than 0.6 Kb from the candidate genes. The work confirmed associations between two yield/antiyield gene-based markers (AYD1m and AYD2m) on chromosome Pv09 with yield and identified their association with a number of yield-related traits, including seed weight. The results also confirmed the usefulness of the NPP marker in screening for CBB resistance. Since disease resistance and yield measurements are environmentally dependent and labor-intensive, the three gene-based markers (CBB- and two yield-related) and quantitative trait loci (QTL) that were validated in this work may be useful tools for simplifying and accelerating the selection of high-yielding and CBB-resistant bean cultivars.

9.
medRxiv ; 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37034683

ABSTRACT

The presence of measurable residual disease (MRD) is strongly associated with treatment outcomes in acute myeloid leukemia (AML). Despite the correlation with clinical outcomes, MRD assessment has yet to be standardized or routinely incorporated into clinical trials. Discrepancies have been observed between different techniques for MRD assessment and there remains a need to compare centralized, high-quality multiparametric flow cytometry (MFC) and ultrasensitive next-generation sequencing (NGS) in AML patients with diverse mutational profiles. In 62 patients with AML, aged 18-60, in first complete remission after intensive induction therapy on the randomized phase 3 SWOG-S0106 clinical trial, MRD detection by MFC was compared with a 29 gene panel utilizing duplex sequencing (DS), an NGS method that generates double-stranded consensus sequences to reduce false positive errors. Using DS, detection of a persistent mutation utilizing defined criteria was seen in 22 (35%) patients and was strongly associated with higher rates of relapse (68% vs 13% at year 5; HR, 8.8; 95% CI, 3.2-24.5; P<0.001) and decreased survival (32% vs 82% at year 5; HR, 5.6; 95% CI, 2.3-13.8; P<0.001). MRD as defined by DS strongly outperformed MFC, which was observed in 10 (16%) patients and marginally associated with higher rates of relapse (50% vs 30% at year 5; HR, 2.4; 95% CI, 0.9-6.7; P=0.087) and decreased survival (40% vs 68% at year 5; HR, 2.5; 95% CI, 1.0-6.3; P=0.059). Furthermore, the prognostic significance of DS MRD status at the time of remission was similar on both randomized arms of the trial, predicting S0106 clinical trial outcomes. These findings suggest that DS is a powerful tool that could be used in patient management and for early treatment assessment in clinical trials.

10.
Article in English | MEDLINE | ID: mdl-37491114

ABSTRACT

Error-corrected duplex sequencing (DS) enables direct quantification of low-frequency mutations and offers tremendous potential for chemical mutagenicity assessment. We investigated the utility of DS to quantify induced mutation frequency (MF) and spectrum in human lymphoblastoid TK6 cells exposed to a prototypical DNA alkylating agent, N-ethyl-N-nitrosourea (ENU). Furthermore, we explored appropriate experimental parameters for this application, and assessed inter-laboratory reproducibility. In two independent experiments in two laboratories, TK6 cells were exposed to ENU (25-200 µM) and DNA was sequenced 48, 72, and 96 h post-exposure. A DS mutagenicity panel targeting twenty 2.4-kb regions distributed across the genome was used to sample diverse, genome-representative sequence contexts. A significant increase in MF that was unaffected by time was observed in both laboratories. Concentration-response in the MF from the two laboratories was strongly positively correlated (r = 0.97). C:G>T:A, T:A>C:G, T:A>A:T, and T:A>G:C mutations increased in consistent, concentration-dependent manners in both laboratories, with high proportions of C:G>T:A at all time points. The consistent results across the three time points suggest that 48 h may be sufficient for mutation analysis post-exposure. The target sites responded similarly between the two laboratories and revealed a higher average MF in intergenic regions. These results, demonstrating remarkable reproducibility across time and laboratory for both MF and spectrum, support the high value of DS for characterizing chemical mutagenicity in both research and regulatory evaluation.


Subject(s)
DNA , Mutagens , Humans , Reproducibility of Results , Mutation , Mutagens/toxicity , Mutagenesis , Ethylnitrosourea
11.
J Nat Prod ; 74(5): 1003-8, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21539315

ABSTRACT

Three advances necessary to bring dolastatin 16 (1) into full-scale preclinical development as an anticancer drug have been accomplished. The X-ray crystal structure of dolastatin 16 has been solved, which allowed stereoselective syntheses of its two new amino acid units, dolamethylleuine (Dml) and dolaphenvaline (Dpv), to be completed. The X-ray crystal structures of synthetic Z-Dml and TFA-Dpv have also been completed.


Subject(s)
Antineoplastic Agents , Depsipeptides , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Crystallography, X-Ray , Depsipeptides/chemical synthesis , Depsipeptides/chemistry , Depsipeptides/pharmacology , Molecular Structure
12.
PLoS One ; 16(1): e0245287, 2021.
Article in English | MEDLINE | ID: mdl-33428680

ABSTRACT

Patients with locally/regionally advanced melanoma were treated with neoadjuvant combination immunotherapy with high-dose interferon α-2b (HDI) and ipilimumab in a phase I clinical trial. Tumor specimens were obtained prior to the initiation of neoadjuvant therapy, at the time of surgery and progression if available. In this study, gene expression profiles of tumor specimens (N = 27) were investigated using the NanoString nCounter® platform to evaluate associations with clinical outcomes (pathologic response, radiologic response, relapse-free survival (RFS), and overall survival (OS)) and define biomarkers associated with tumor response. The Tumor Inflammation Signature (TIS), an 18-gene signature that enriches for response to Programmed cell death protein 1 (PD-1) checkpoint blockade, was also evaluated for association with clinical response and survival. It was observed that neoadjuvant ipilimumab-HDI therapy demonstrated an upregulation of immune-related genes, chemokines, and transcription regulator genes involved in immune cell activation, function, or cell proliferation. Importantly, increased expression of baseline pro-inflammatory genes CCL19, CD3D, CD8A, CD22, LY9, IL12RB1, C1S, C7, AMICA1, TIAM1, TIGIT, THY1 was associated with longer OS (p < 0.05). In addition, multiple genes that encode a component or a regulator of the extracellular matrix such as MMP2 and COL1A2 were identified post-treatment as being associated with longer RFS and OS. In all baseline tissues, high TIS scores were associated with longer OS (p = 0.0166). Also, downregulated expression of cell proliferation-related genes such as CUL1, CCND1 and AAMP at baseline was associated with pathological and radiological response (unadjusted p < 0.01). In conclusion, we identified numerous genes that play roles in multiple biological pathways involved in immune activation, immune suppression and cell proliferation correlating with pathological/radiological responses following neoadjuvant immunotherapy highlighting the complexity of immune responses modulated by immunotherapy. Our observations suggest that TIS may be a useful biomarker for predicting survival outcomes with combination immunotherapy.


Subject(s)
CTLA-4 Antigen/antagonists & inhibitors , Inflammation/genetics , Interferon-alpha/therapeutic use , Melanoma/immunology , Melanoma/pathology , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Transcription, Genetic , CTLA-4 Antigen/metabolism , Combined Modality Therapy , Disease-Free Survival , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Immunotherapy , Interferon-alpha/pharmacology , Ipilimumab/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Neoadjuvant Therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Survival Analysis , Transcription, Genetic/drug effects , Treatment Outcome
13.
Environ Mol Mutagen ; 62(5): 306-318, 2021 06.
Article in English | MEDLINE | ID: mdl-34050964

ABSTRACT

The organotypic human air-liquid-interface (ALI) airway tissue model has been used as an in vitro cell culture system for evaluating the toxicity of inhaled substances. ALI airway cultures are highly differentiated, which has made it challenging to evaluate genetic toxicology endpoints. In the current study, we assayed DNA damage with the high-throughput CometChip assay and quantified mutagenesis with Duplex Sequencing, an error-corrected next-generation sequencing method capable of detecting a single mutation per 107 base pairs. Fully differentiated human ALI airway cultures were treated from the basolateral side with 6.25 to 100 µg/mL ethyl methanesulfonate (EMS) over a period of 28 days. CometChip assays were conducted after 3 and 28 days of treatment, and Duplex Sequencing after 28 days of treatment. Treating the airway cultures with EMS resulted in time- and concentration-dependent increases in DNA damage and a concentration-dependent increase in mutant frequency. The mutations observed in the EMS-treated cultures were predominantly C → T transitions and exhibited a unique trinucleotide signature relative to the negative control. Measurement of physiological endpoints indicated that the EMS treatments had no effect on anti-p63-positive basal cell frequency, but produced concentration-responsive increases in cytotoxicity and perturbations in cell morphology, along with concentration-responsive decreases in culture viability, goblet cell and anti-Ki67-positive proliferating cell frequency, cilia beating frequency, and mucin secretion. The results indicate that a unified 28-day study can be used to measure several important safety endpoints in physiologically relevant human in vitro ALI airway cultures, including DNA damage, mutagenicity, and tissue-specific general toxicity.


Subject(s)
DNA Damage , Epithelial Cells/pathology , Ethyl Methanesulfonate/adverse effects , Mutagenesis , Mutagenicity Tests/methods , Mutation , Respiratory System/pathology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Mutagens/adverse effects , Respiratory System/drug effects , Respiratory System/metabolism
14.
Front Plant Sci ; 11: 1172, 2020.
Article in English | MEDLINE | ID: mdl-32849727

ABSTRACT

The nitrogen fixing ability of common bean (Phaseolus vulgaris L.) in association with rhizobia is often characterized as poor compared to other legumes, and nitrogen fertilizers are commonly used in bean production to achieve high yields, which in general inhibits nitrogen fixation. In addition, plants cannot take up all the nitrogen applied to the soil as a fertilizer leading to runoff and groundwater contamination. The overall objective of this work is to reduce use of nitrogen fertilizer in common bean production. This would be a major advance in profitability for the common bean industry in Canada and would significantly improve the ecological footprint of the crop. In the current work, 22 bean genotypes [including recombinant inbred lines (RILs) from the Mist × Sanilac population and a non-nodulating mutant (R99)] were screened for their capacity to fix atmospheric nitrogen under four nitrogen regimes. The genotypes were evaluated in replicated field trials on N-poor soils over three years for the percent nitrogen derived from atmosphere (%Ndfa), yield, and a number of yield-related traits. Bean genotypes differed for all analyzed traits, and the level of nitrogen significantly affected most of the traits, including %Ndfa and yield in all three years. In contrast, application of rhizobia significantly affected only few traits, and the effect was inconsistent among the years. Nitrogen application reduced symbiotic nitrogen fixation (SNF) to various degrees in different bean genotypes. This variation suggests that SNF in common bean can be improved through breeding and selection for the ability of bean genotypes to fix nitrogen in the presence of reduced fertilizer levels. Moreover, genotypes like RIL_38, RIL_119, and RIL_131, being both high yielding and good nitrogen fixers, have potential for simultaneous improvement of both traits. However, breeding advancement might be slow due to an inconsistent correlation between these traits.

15.
Sci Transl Med ; 12(546)2020 06 03.
Article in English | MEDLINE | ID: mdl-32493790

ABSTRACT

Acute myeloid leukemia (AML) is a molecularly and clinically heterogeneous hematological malignancy. Although immunotherapy may be an attractive modality to exploit in patients with AML, the ability to predict the groups of patients and the types of cancer that will respond to immune targeting remains limited. This study dissected the complexity of the immune architecture of AML at high resolution and assessed its influence on therapeutic response. Using 442 primary bone marrow samples from three independent cohorts of children and adults with AML, we defined immune-infiltrated and immune-depleted disease classes and revealed critical differences in immune gene expression across age groups and molecular disease subtypes. Interferon (IFN)-γ-related mRNA profiles were predictive for both chemotherapy resistance and response of primary refractory/relapsed AML to flotetuzumab immunotherapy. Our compendium of microenvironmental gene and protein profiles provides insights into the immuno-biology of AML and could inform the delivery of personalized immunotherapies to IFN-γ-dominant AML subtypes.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents , Leukemia, Myeloid, Acute , Adult , Antibodies, Bispecific/therapeutic use , Antineoplastic Agents/therapeutic use , Child , Humans , Immunotherapy , Leukemia, Myeloid, Acute/drug therapy
16.
Epigenetics ; 14(8): 780-790, 2019 08.
Article in English | MEDLINE | ID: mdl-31060426

ABSTRACT

Assisted reproductive technologies are known to alter the developmental environment of gametes and early embryos during the most dynamic period of establishing the epigenome. This may result in the introduction of errors during active DNA methylation reprogramming. Controlled ovarian hyperstimulation, or superovulation, is a ubiquitously used intervention which has been demonstrated to alter the methylation of certain imprinted genes. The objective of this study was to investigate whether ovarian hyperstimulation results in genome-wide DNA methylation changes in mouse early embryos. Ovarian hyperstimulation was induced by treating mice with either low doses (5 IU) or high doses (10 IU) of PMSG and hCG. Natural mating (NM) control mice received no treatment. Zygotes and 8-cell embryos were collected from each group and DNA methylomes were generated by whole-genome bisulfite sequencing. In the NM group, mean CpG methylation levels slightly decreased from zygote to 8-cell stage, whereas a large decrease in mean CpG methylation level was observed in both superovulated groups. A separate analysis of the mean CpG methylation levels within each developmental stage confirmed that significant genome-wide erasure of CpG methylation from the zygote to 8-cell stage only occurred in the superovulation groups. Our results suggest that superovulation alters the genome-wide DNA methylation erasure process in mouse early pre-implantation embryos. It is not clear whether these changes are transient or persistent. Further studies are ongoing to investigate the impact of ovarian hyperstimulation on DNA methylation re-establishment in later stages of embryo development.


Subject(s)
DNA Methylation , Superovulation/genetics , Whole Genome Sequencing/veterinary , Animals , CpG Islands , Embryonic Development , Epigenesis, Genetic , Female , Mice , Reproductive Techniques, Assisted
17.
J Cell Biol ; 210(7): 1117-31, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26391660

ABSTRACT

Protease-activated receptor 1 (PAR1) is a G protein-coupled receptor (GPCR) for thrombin and promotes inflammatory responses through multiple pathways including p38 mitogen-activated protein kinase signaling. The mechanisms that govern PAR1-induced p38 activation remain unclear. Here, we define an atypical ubiquitin-dependent pathway for p38 activation used by PAR1 that regulates endothelial barrier permeability. Activated PAR1 K63-linked ubiquitination is mediated by the NEDD4-2 E3 ubiquitin ligase and initiated recruitment of transforming growth factor-ß-activated protein kinase-1 binding protein-2 (TAB2). The ubiquitin-binding domain of TAB2 was essential for recruitment to PAR1-containing endosomes. TAB2 associated with TAB1, which induced p38 activation independent of MKK3 and MKK6. The P2Y1 purinergic GPCR also stimulated p38 activation via NEDD4-2-mediated ubiquitination and TAB1-TAB2. TAB1-TAB2-dependent p38 activation was critical for PAR1-promoted endothelial barrier permeability in vitro, and p38 signaling was required for PAR1-induced vascular leakage in vivo. These studies define an atypical ubiquitin-mediated signaling pathway used by a subset of GPCRs that regulates endosomal p38 signaling and endothelial barrier disruption.


Subject(s)
Endosomes/metabolism , MAP Kinase Signaling System/physiology , Receptor, PAR-1/metabolism , Ubiquitin/metabolism , Ubiquitination/physiology , p38 Mitogen-Activated Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Capillary Permeability/physiology , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/genetics , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , HeLa Cells , Humans , Mice , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases , Receptor, PAR-1/genetics , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics
19.
PLoS One ; 9(1): e81454, 2014.
Article in English | MEDLINE | ID: mdl-24489642

ABSTRACT

Chemokines control cell migration in many contexts including development, homeostasis, immune surveillance and inflammation. They are also involved in a wide range of pathological conditions ranging from inflammatory diseases and cancer, to HIV. Chemokines function by interacting with two types of receptors: G protein-coupled receptors on the responding cells, which transduce signaling pathways associated with cell migration and activation, and glycosaminoglycans on cell surfaces and the extracellular matrix which organize and present some chemokines on immobilized surface gradients. To probe these interactions, imaging methods and fluorescence-based assays are becoming increasingly desired. Herein, a method for site-specific fluorescence labeling of recombinant chemokines is described. It capitalizes on previously reported 11-12 amino acid tags and phosphopantetheinyl transferase enzymes to install a fluorophore of choice onto a specific serine within the tag through a coenzyme A-fluorophore conjugate. The generality of the method is suggested by our success in labeling several chemokines (CXCL12, CCL2, CCL21 and mutants thereof) and visualizing them bound to chemokine receptors and glycosaminoglycans. CXCL12 and CCL2 showed the expected co-localization on the surface of cells with their respective receptors CXCR4 and CCR2 at 4 °C, and co-internalization with their receptors at 37 °C. By contrast, CCL21 showed the presence of large discrete puncta that were dependent on the presence of both CCR7 and glycosaminoglycans as co-receptors. These data demonstrate the utility of this labeling approach for the detection of chemokine interactions with GAGs and receptors, which can vary in a chemokine-specific manner as shown here. For some applications, the small size of the fluorescent adduct may prove advantageous compared to other methods (e.g. antibody labeling, GFP fusion) by minimally perturbing native interactions. Other advantages of the method are the ease of bacterial expression, the versatility of labeling with any maleimide-fluorophore conjugate of interest, and the covalent nature of the fluorescent adduct.


Subject(s)
Chemokines/chemistry , Chemokines/metabolism , Recombinant Proteins/metabolism , Cell Line , Chemokine CCL2/chemistry , Chemokine CCL2/metabolism , Chemokine CCL21/chemistry , Chemokine CCL21/metabolism , Chemokine CXCL12/chemistry , Chemokine CXCL12/metabolism , Humans , Receptors, CCR2/chemistry , Receptors, CCR2/metabolism , Receptors, CCR7/chemistry , Receptors, CCR7/metabolism , Receptors, CXCR4/chemistry , Receptors, CXCR4/metabolism , Recombinant Proteins/chemistry
20.
J Crohns Colitis ; 7(8): e279-85, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23158500

ABSTRACT

BACKGROUND: Metabolic risk factors are associated with non-alcoholic fatty liver disease (NAFLD), but they are less frequent in inflammatory bowel disease (IBD). AIM: This study evaluates the frequency of NAFLD and its risk factors among IBD patients including anti-TNF-α therapy. METHODS: IBD patients who underwent abdominal imaging from January, 2009 to December, 2010 were analyzed in this nested, case-controlled study. IBD patients with NAFLD by imaging were compared with those who had no evidence of NAFLD (control). RESULTS: Among 928 IBD patients, 76 (8.2%) had evidence of NAFLD by imaging, and were compared to 141 patients without NAFLD evaluated (study: control ratio=~1:2). NAFLD patients were older (46.0 ± 13.3 vs. 42.0 ±14.1 years; p=0.018) and had a later onset of IBD compared to the control group (37.2 ± 15.3 vs. 28.7 ± 23.8 years; p=0.002). Metabolic syndrome was present in 29.0% of NAFLD patients, with a median Adult Treatment Panel risk factor of 2 [Interquartile range 1,3]. Patients not receiving anti-TNF-α therapy had a higher occurrence of NAFLD (p=0.048). In multivariate analysis, hypertension (OR=3.5), obesity (OR=2.1), small bowel surgeries (OR=3.7), and use of steroids at the time of imaging (OR=3.7) were independent factors associated with NAFLD. CONCLUSION: NAFLD occurred in 8.2% of the IBD population. NAFLD patients were older and had a later onset of IBD disease. IBD patients develop NAFLD with fewer metabolic risk factors than non-IBD NAFLD patients. It is also less common among patients who received anti-TNF-α therapy.


Subject(s)
Colitis, Ulcerative/epidemiology , Crohn Disease/epidemiology , Fatty Liver/epidemiology , Adult , Age Factors , Age of Onset , Case-Control Studies , Colitis, Ulcerative/complications , Colitis, Ulcerative/drug therapy , Crohn Disease/complications , Crohn Disease/drug therapy , Fatty Liver/complications , Fatty Liver/diagnosis , Female , Humans , Hypertension/epidemiology , Intestine, Small/surgery , Male , Metabolic Syndrome/epidemiology , Middle Aged , Non-alcoholic Fatty Liver Disease , Obesity/epidemiology , Prevalence , Risk Factors , Steroids/therapeutic use , Tumor Necrosis Factor-alpha/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL