Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Proc Natl Acad Sci U S A ; 119(15): e2116576119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377807

ABSTRACT

In studies of vision and audition, stimuli can be chosen to span the visible or audible spectrum; in olfaction, the axes and boundaries defining the analogous odorous space are unknown. As a result, the population of olfactory space is likewise unknown, and anecdotal estimates of 10,000 odorants have endured. The journey a molecule must take to reach olfactory receptors (ORs) and produce an odor percept suggests some chemical criteria for odorants: a molecule must 1) be volatile enough to enter the air phase, 2) be nonvolatile and hydrophilic enough to sorb into the mucous layer coating the olfactory epithelium, 3) be hydrophobic enough to enter an OR binding pocket, and 4) activate at least one OR. Here, we develop a simple and interpretable quantitative model that reliably predicts whether a molecule is odorous or odorless based solely on the first three criteria. Applying our model to a database of all possible small organic molecules, we estimate that at least 40 billion possible compounds are odorous, six orders of magnitude larger than current estimates of 10,000. With this model in hand, we can define the boundaries of olfactory space in terms of molecular volatility and hydrophobicity, enabling representative sampling of olfactory stimulus space.


Subject(s)
Odorants , Smell , Volatile Organic Compounds , Animals , Humans , Machine Learning , Models, Theoretical , Receptors, Odorant , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/classification , Volatilization
2.
Nucleic Acids Res ; 37(19): e127, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19679642

ABSTRACT

In both research and therapeutic applications of RNA interference, it is often advantageous to silence several targets simultaneously. Toward this end, several groups have developed vectors that utilize the model of endogenously encoded micro (mi) RNAs, where a single RNA polymerase II promoter can drive the expression of multiple interfering RNAs. Stronger pol III promoters have been used to drive individual short hairpin (sh) RNAs, but to date, it has been necessary to repeat the promoter in each silencing cassette to achieve multiplexed expression from a single vector. Here, we show that it is possible to drive polycistronic expression from a single pol III promoter when the interfering RNAs are formatted to resemble miRNAs rather than shRNAs. As many as four miRNAs designed to target hepatitis B virus (HBV) transcripts are shown to be processed and functional in reporter assays as well as in the context of replicating virus in cell culture systems. Although it has been observed that high levels of expression of shRNAs can lead to cytotoxicity, we find no significant evidence in transient transfection assays that the HBV-miRNAs produced by our vectors compete for the activity of endogenously produced miR-122 or for processing of an exogenously expressed miR-EGFP.


Subject(s)
RNA Interference , RNA Polymerase III/metabolism , Cell Line, Tumor , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Humans , MicroRNAs/chemistry , MicroRNAs/metabolism , Promoter Regions, Genetic , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Virus Replication
3.
Antiviral Res ; 80(1): 36-44, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18499277

ABSTRACT

RNA interference (RNAi) is a process that can target intracellular RNAs for degradation in a highly sequence-specific manner, making it a powerful tool that is being pursued in both research and therapeutic applications. Hepatitis B virus (HBV) is a serious public health problem in need of better treatment options, and aspects of its life cycle make it an excellent target for RNAi-based therapeutics. We have designed a vector that expresses interfering RNAs that target HBV transcripts, including both viral RNA replicative intermediates and mRNAs encoding viral proteins. Our vector design incorporates many features of endogenous microRNA (miRNA) gene organization that are proving useful for the development of reagents for RNAi. In particular, our vector contains an RNA pol II driven gene cassette that leads to tissue-specific expression and efficient processing of multiple interfering RNAs from a single transcript, without the co-expression of any protein product. This vector shows potent silencing of HBV targets in cell culture models of HBV infection. The vector design will be applicable to silencing of additional cellular or disease-related genes.


Subject(s)
Genetic Vectors , Hepatitis B virus/metabolism , Liver/metabolism , RNA, Small Interfering/metabolism , Viral Proteins/metabolism , Antiviral Agents/pharmacology , Base Sequence , Cell Line, Tumor , HeLa Cells , Hepatitis B virus/chemistry , Hepatitis B virus/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Data , Plasmids/genetics , RNA Interference , RNA Polymerase II/metabolism , RNA, Small Interfering/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Proteins/genetics
4.
J Vis Exp ; (88)2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24961834

ABSTRACT

Odorants create unique and overlapping patterns of olfactory receptor activation, allowing a family of approximately 1,000 murine and 400 human receptors to recognize thousands of odorants. Odorant ligands have been published for fewer than 6% of human receptors(1-11). This lack of data is due in part to difficulties functionally expressing these receptors in heterologous systems. Here, we describe a method for expressing the majority of the olfactory receptor family in Hana3A cells, followed by high-throughput assessment of olfactory receptor activation using a luciferase reporter assay. This assay can be used to (1) screen panels of odorants against panels of olfactory receptors; (2) confirm odorant/receptor interaction via dose response curves; and (3) compare receptor activation levels among receptor variants. In our sample data, 328 olfactory receptors were screened against 26 odorants. Odorant/receptor pairs with varying response scores were selected and tested in dose response. These data indicate that a screen is an effective method to enrich for odorant/receptor pairs that will pass a dose response experiment, i.e. receptors that have a bona fide response to an odorant. Therefore, this high-throughput luciferase assay is an effective method to characterize olfactory receptors-an essential step toward a model of odor coding in the mammalian olfactory system.


Subject(s)
High-Throughput Screening Assays/methods , Luciferases/analysis , Receptors, Odorant/analysis , Humans , Ligands , Luciferases/metabolism , Odorants/analysis , Receptors, Odorant/metabolism
5.
Nat Neurosci ; 17(1): 114-20, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24316890

ABSTRACT

Humans have ~400 intact odorant receptors, but each individual has a unique set of genetic variations that lead to variation in olfactory perception. We used a heterologous assay to determine how often genetic polymorphisms in odorant receptors alter receptor function. We identified agonists for 18 odorant receptors and found that 63% of the odorant receptors we examined had polymorphisms that altered in vitro function. On average, two individuals have functional differences at over 30% of their odorant receptor alleles. To show that these in vitro results are relevant to olfactory perception, we verified that variations in OR10G4 genotype explain over 15% of the observed variation in perceived intensity and over 10% of the observed variation in perceived valence for the high-affinity in vitro agonist guaiacol but do not explain phenotype variation for the lower-affinity agonists vanillin and ethyl vanillin.


Subject(s)
Genetic Variation , Olfactory Perception/genetics , Receptors, Odorant/metabolism , Smell/physiology , Adult , Aged , Dose-Response Relationship, Drug , Female , Gene Frequency , Genotype , Guaiacol/pharmacology , Humans , Linear Models , Male , Middle Aged , Odorants , Polymorphism, Single Nucleotide , Psychophysics , Receptors, Odorant/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL