Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Aquac Nutr ; 2023: 6572421, 2023.
Article in English | MEDLINE | ID: mdl-37398630

ABSTRACT

Efforts have been made to find alternatives to fish meal (FM), as the sustainability of aquaculture depends on it. Insect meal (IM) is a potential candidate to partially replace FM, being more sustainable and economically viable. In this experimental trial, three diets were tested with different yellow mealworm incorporation: a control diet with no IM, a diet with an inclusion of 10% IM (Ins10), and a diet with an incorporation of 20% IM (Ins20). The diets were tested on 10.5 g meagre for 47 days. The results showed that an IM inclusion higher than 10% affected both growth (2.6 vs. 2.2) and FCR (1.5 vs. 1.9) of meagre juveniles. However, this reduction in growth did not result from lower protein retention or changes in muscle fibre area or density. Little differences were observed in the activity of pancreatic and intestinal enzymes except for aminopeptidase total activity which was higher in the control and Ins10 compared to Ins20 (3847 vs. 3540 mU/mg protein), suggesting no limitations in protein synthesis. Also, the alkaline phosphatase intestinal maturation index was higher in the control group compared to the IM groups (437 vs. 296). On the contrary, several differences were also found in the proteolytic activity in the hepatic and muscle tissues of meagre juveniles fed the Ins10 diet. The inclusion of IM had no impact on intestine histomorphology but changes were detected in the enterocytes of fish from control and Ins10 which showed hypervacuolization and nucleus misplacement compared to the Ins20 treatment. Nevertheless, a higher percentage of Vibrionaceae was recorded for meagre fed on the Ins20 diet. Since no signs of inflammation were observed in the distal intestine, this suggests IM incorporation could have had an important impact on intestinal health due to its antimicrobial properties. This is supported by an increase in the haematocrit in the treatments where IM was added (20 to 25%). In conclusion, incorporations of IM at percentages up to 10% do not seem to have a negative impact on meagre performance at this age but can enhance the fish immune system and protection against intestinal inflammation.

2.
Ecotoxicology ; 28(9): 1075-1084, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31559557

ABSTRACT

The aquaculture growth can be followed by the occurrence of more and new pathogenic agents, since the production leads to higher fish densities in confined areas more appropriate to the appearance and propagation of pathologies. Copper sulfate has been widely used in preventing and controlling fish parasites. The objective of this study is to investigate the effects of copper treatments in the fish tissues (bioaccumulation and histological changes in different organs), mortality and evaluate what happens during the recovery period. White sea bream (Diplodus sargus) were exposed to copper sulfate (0.25 and 0.5 mg L-1) during 60 days followed with a 75-day recovery period. The results showed that the concentration of copper in fish liver was significantly higher in the 0.5 mg L-1 treatment than in the 0.25 mg L-1 treatment. Conversely, copper load in the muscle did not differ significantly between treatments and control. Copper levels in muscle, and especially in liver, increased during copper exposure (up to 60 days). In summary, at higher concentrations copper sulfate treatment (0.5 mg L-1) might be toxic to fish, which showed histological alterations and copper accumulation in their tissues, mainly in the liver. Nevertheless, individuals returned to their original state after a 75-day recovery period and the tested copper concentrations does not represents risk for food safety.


Subject(s)
Antiparasitic Agents/toxicity , Copper Sulfate/toxicity , Copper/toxicity , Environmental Exposure/analysis , Perciformes/physiology , Animals , Aquaculture , Bioaccumulation , Dose-Response Relationship, Drug , Longevity/drug effects , Tissue Distribution
3.
Dis Aquat Organ ; 127(3): 201-211, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29516859

ABSTRACT

Amyloodiniosis is a parasitological disease caused by one of the most common and important parasitic dinoflagellates in fish, Amyloodinium ocellatum (Brown), that represents a major bottleneck for gilthead seabream semi-intensive aquaculture in Southern Europe. In this experiment, we analyzed some metabolic, osmoregulatory and stress indicators to elucidate some of the physiological responses of gilthead sea bream when exposed to an A. ocellatum outbreak. We observed significant differences between Control and Infection groups in the cortisol, lactate and gill Na+/K+-ATPase (NKA) activity levels but that glucose, osmolarity, pH and total protein did not present such differences. This could indicate that the presence of the parasite induced a stress response, possibly enhancing the metabolization of glucose and subsequently lactate to cope with the higher energy requirements of the organism. There was also a decrease in gill NKA activity possibly due to severe epithelial damage and increased mucus production caused by the parasite A. ocellatum, which could induce anoxia and osmoregulatory impairment in the organism. However, further works must be performed to fully understand the physiological reactions of fish for A. ocellatum outbreaks.


Subject(s)
Dinoflagellida , Fish Diseases/parasitology , Protozoan Infections, Animal/parasitology , Sea Bream/parasitology , Animals , Gills/parasitology , Gills/pathology , Protozoan Infections, Animal/pathology , Stress, Physiological
4.
Fish Physiol Biochem ; 44(3): 885-893, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29500583

ABSTRACT

The present study reveals the first characterization of the plasma melatonin rhythms of the meagre (Argyrosomus regius) under aquaculture conditions. Melatonin levels were monitored during a 24 h cycle under a photoperiod of 16 L:8D and under constant darkness (DD), respectively to characterize the daily rhythm of this indoleamine and to test its endogenous origin. Besides, to identify which light intensities are perceived as night or day by this species, the degree of inhibition of nocturnal melatonin production caused by increasing intensities of light was tested (3.3, 5.3, 10.5, and 120 µW/cm2), applying 1 h light pulses at Mid-Dark. The result for melatonin daily rhythm in plasma showed a typical profile: concentration remained low during all daytime points, increasing greatly during dark points, with maximum values at 16:00 and 22:00 h, zeitgeber time. Under DD conditions, the plasma melatonin profile persisted, with a similar acrophase but with a lower amplitude between subjective day and night periods, indicating this rhythm as being endogenously driven. Moreover, meagre seemed to be very sensitive to dim levels of illumination during the night, since an intensity of just 3.3 µW/cm2 inhibited melatonin production. However, only the pulse of 5.3 µW/cm2 caused a melatonin drop till daytime concentrations. Thus, the threshold of light detection by the pineal organ was suggested as being located between 3.3 and 5.3 µW/cm2. Such results are an added value for this species biology knowledge, and in consequence to its adaptation to aquaculture conditions, allowing the improvement of culture husbandry protocols.


Subject(s)
Circadian Rhythm , Fishes/blood , Melatonin/blood , Animals , Aquaculture , Light , Photoperiod
5.
Fish Physiol Biochem ; 41(6): 1509-14, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26205528

ABSTRACT

The purpose of this study was to describe and compare the reproductive success and egg and larvae quality between wild and first-generation (F1) breeders of Argyrosomus regius. Wild broodstock were adapted to captivity, and good-quality spawns were obtained in 2009-2010, after GnRH treatment. In 2012, the F1 meagre (3 years old) spawned naturally at IPMA's Aquaculture Research Station facilities. From each spawning event, the following parameters were determined: number of floating and non-floating eggs, egg size, hatching success and larval total length. Eggs size and percentage of hatching obtained from F1 breeders (1.04 ± 0.10 mm and 90.5 ± 6.4%) were significantly higher when compared with wild breeders (0.97 ± 0.13 mm and 17.0 ± 12.7%). Although wild breeder spawns exhibited 2.7 ± 0.2 mm for larval total length, F1 breeder spawns presented 2.6 ± 0.2 mm. The wild and F1 breeder spawns exhibit a good egg and larval quality, indicating a promising starting point for a successful meagre hatchery production.


Subject(s)
Aquaculture/methods , Perciformes/physiology , Reproduction , Animals , Gonadotropin-Releasing Hormone/administration & dosage , Larva/physiology , Ovum/physiology , Portugal
6.
Article in English | MEDLINE | ID: mdl-38387740

ABSTRACT

The maturation of the intestinal digestive and absorptive functions might limit the amount of absorbed nutrients to fulfil the high requirements of the fast-growing marine fish larva. Glutamine (Gln) has been described to improve intestinal epithelium functions, due to its involvement in energy metabolism and protein synthesis. The purpose of this study was to evaluate dietary 0.2% Gln supplementation on aspects of intestinal physiology, protein metabolism and growth-related genes expression in Senegalese sole larvae. Experiment was carried out between 12 and 33 days post hatching (DPH) and fish were divided into two experimental groups, one fed Artemia spp. (CTRL) and the other fed Artemia spp. supplemented with Gln (GLN). GLN diet had two times more Gln than the CTRL diet. Samples were collected at 15, 19, 26 and 33 DPH for biometry, histology, and digestive enzymes activity, and at 33 DPH for gene expression, protein metabolism and AA content determination. Growth was significantly higher for Senegalese sole fed GLN diet, supported by differences on protein metabolism and growth-related gene expression. Slight differences were observed between treatments regarding the intestinal physiology. Overall, GLN diet seems to be directed to enhance protein metabolism leading to higher larval growth.


Subject(s)
Flatfishes , Glutamine , Animals , Glutamine/pharmacology , Glutamine/metabolism , Dietary Supplements , Intestines , Diet/veterinary
7.
PeerJ ; 11: e14599, 2023.
Article in English | MEDLINE | ID: mdl-36655052

ABSTRACT

Myxosporeans are widespread cnidarian parasites that usually parasitize fish as part of their complex life cycle, thus constituting a potential threat for the aquaculture industry. White seabream Diplodus sargus (L.) is a commercially valuable sparid fish reared in Southern European aquacultures. Nonetheless, knowledge on myxosporean infections potentially harming the sustainable production of this fish is extremely limited. In this study, a myxosporean survey was conducted on D. sargus specimens reared in two Southern Portuguese fish farms. Two coelozoic myxosporeans were detected infecting the gall bladder, and are herein reported based on microscopic and molecular procedures: Ceratomyxa sargus n. sp. and Zschokkella auratis Rocha et al., 2013, previously described from reared stocks of gilthead seabream Sparus aurata in the same geographic locality. Ceratomyxa sargus n. sp. is the 12th species of the genus to be reported from Southern European sparids, reinforcing a substantial radiation of Ceratomyxa within this fish family and geographic region. SSU rRNA-based Bayesian inference and maximum likelihood analyses revealed C. sargus n. sp. positioned separately from other sparid-infecting Ceratomyxa spp. reported from Southern European countries, demonstrating that this species does not share a more immediate common ancestor with its closest relatives based on host affinity and geography. The recognition of a novel sparid-infecting lineage within the Ceratomyxa clade strengthens the contention that this genus entered sparid fish multiple times, namely in the Southern European region. The identification of Zschokkella auratis infections in D. sargus demonstrates that host shift has occurred among sparids reared in the Southern Portuguese coast. This agrees with the broad host specificity that is usually attributed to this genus, and that may be suggested to be the outcome of the capacity of the Zschokkella morphotype to undergo host shift/switch based on our findings and the limited molecular data available for this genus. Thus, a better understanding of Zschokkella host-associated diversification and dispersal mechanisms requires the increasing availability of molecular data from infections of the same species occurring in multiple hosts and geographical locations.


Subject(s)
Fish Diseases , Myxozoa , Parasites , Parasitic Diseases, Animal , Perciformes , Sea Bream , Animals , Sea Bream/parasitology , Gallbladder/parasitology , Bayes Theorem , Phylogeny , Fish Diseases/epidemiology , Parasitic Diseases, Animal/epidemiology , Myxozoa/genetics
8.
Toxins (Basel) ; 14(7)2022 07 08.
Article in English | MEDLINE | ID: mdl-35878205

ABSTRACT

The dinoflagellate Amyloodinium ocellatum is the etiological agent of a parasitic disease named amyloodiniosis. Mortalities of diseased fish are usually attributed to anoxia, osmoregulatory impairment, or opportunistic bacterial infections. Nevertheless, the phylogenetic proximity of A. ocellatum to a group of toxin-producing dinoflagellates from Pfiesteria, Parvodinium and Paulsenella genera suggests that it may produce toxin-like compounds, adding a new dimension to the possible cause of mortalities in A. ocellatum outbreaks. To address this question, extracts prepared from different life stages of the parasite were tested in vitro for cytotoxic effects using two cell lines derived from branchial arches (ABSa15) and the caudal fin (CFSa1) of the gilthead seabream (Sparus aurata), and for hemolytic effects using erythrocytes purified from the blood of gilthead seabream juveniles. Cytotoxicity and a strong hemolytic effect, similar to those observed for Karlodinium toxins, were observed for the less polar extracts of the parasitic stage (trophont). A similar trend was observed for the less polar extracts of the infective stage (dinospores), although cell viability was only affected in the ABSa15 line. These results suggest that A. ocellatum produces tissue-specific toxic compounds that may have a role in the attachment of the dinospores' and trophonts' feeding process.


Subject(s)
Dinoflagellida , Fish Diseases , Parasites , Sea Bream , Animals , Fish Diseases/epidemiology , Fish Diseases/parasitology , Phylogeny , Sea Bream/parasitology
9.
Sci Total Environ ; 804: 150188, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34798736

ABSTRACT

Microplastics and nanomaterials are applied in a myriad of commercial and industrial applications. When leaked to natural environments, such small particles might threaten living organisms' health, particularly when considering their potential combination that remains poorly investigated. This study investigated the physiological and biochemical effects of polyethylene (PE; 64-125 µm in size, 0.1, 1.0, and 10.0 mg·L-1) single and combined with an engineered nanomaterial applied in antifouling coatings, the copper-aluminium layered double hydroxides (Cu-Al LDH; 0.33, 1.0, and 3.33 mg·L-1) in the flatfish Solea senegalensis larvae (8 dph) after 3 h exposure, in a full factorial design. Particles ingestion, histopathology, and biochemical biomarkers were assessed. Fish larvae presented <1 PE particles in their gut, independently of their concentration in the medium. The histological health index showed minimal pathological alterations at PE combined exposure, with a higher value observed at 1 mg LDH·L-1 × 0.1 mg PE·L-1. Gut deformity and increased antioxidant defences (catalase), neurotransmission (acetylcholinesterase), and aerobic energy production (electron transport system) were observed at PE ≥ 1.0 mg·L-1. No oxidative damage (lipid peroxidation) or alterations in the detoxification capacity (glutathione-S-transferase) was observed on single and combined exposures. PE, combined or not with Cu-Al LDH, does not seem to compromise larvae's homeostasis considering levels reported so far in the marine and aquaculture environments. However, harsh effects are expected with MP contamination rise, as projections suggest.


Subject(s)
Flatfishes , Water Pollutants, Chemical , Acetylcholinesterase , Animals , Microplastics , Plastics , Polyethylene/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
10.
Microbiol Resour Announc ; 10(44): e0081321, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34734757

ABSTRACT

We present the genome sequence of Vibrio jasicida 20LP, a bacterial strain retrieved from larvae of gilthead seabream (Sparus aurata), a highly valuable, model fish species in land-based aquaculture. Annotation of the V. jasicida 20LP genome reveals multiple genomic features potentially underpinning opportunistic associations with diverse marine animals.

11.
Foods ; 10(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34945654

ABSTRACT

Water extracts from sea lavender (Limonium algarvense Erben) plants cultivated in greenhouse conditions and irrigated with freshwater and saline aquaculture effluents were evaluated for metabolomics by liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS/MS), and functional properties by in vitro and ex vivo methods. In vitro antioxidant methods included radical scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric-reducing antioxidant power (FRAP), and copper and iron chelating assets. Flowers' extracts had the highest compounds' diversity (flavonoids and its derivatives) and strongest in vitro antioxidant activity. These extracts were further tested for ex vivo antioxidant properties by oxidative haemolysis inhibition (OxHLIA), lipid peroxidation inhibition by thiobarbituric acid reactive substances (TBARS) formation, and anti-melanogenic, anti-tyrosinase, anti-inflammation, and cytotoxicity. Extract from plants irrigated with 300 mM NaCl was the most active towards TBARS (IC50 = 81 µg/mL) and tyrosinase (IC50 = 873 µg/mL). In OxHLIA, the activity was similar for fresh- and saltwater-irrigated plants (300 mM NaCl; IC50 = 136 and 140 µg/mL, respectively). Samples had no anti-inflammatory and anti-melanogenic abilities and were not toxic. Our results suggest that sea lavender cultivated under saline conditions could provide a flavonoid-rich water extract with antioxidant and anti-tyrosinase properties with potential use as a food preservative or as a functional ingredient in herbal supplements.

12.
Microbiol Resour Announc ; 10(37): e0065821, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34528822

ABSTRACT

We report the draft genome sequence of Vibrio chagasii strain 18LP, isolated from gilthead seabream larvae at a fish hatchery research station in Portugal. The genome presents numerous features underlying opportunistic behavior, including genes coding for toxin biosynthesis and tolerance, host cell invasion, and heavy metal resistance.

13.
Reproduction ; 135(4): 449-59, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18367506

ABSTRACT

Computer-assisted sperm analysis (CASA) and clustering analysis have enabled to study sperm subpopulations in mammals, but their use in fish sperm has been limited. We have used spermatozoa from Senegalese sole (Solea senegalensis) as a model for subpopulation analysis in teleostei using two different activating solutions. Semen from six males was activated using 1100 mOsm/kg solutions: artificial seawater (ASW) or sucrose solution (SUC). Motility was acquired at 15, 30, 45, and 60 s post-activation. CASA parameters were combined into two principal components, which were used in a non-hierarchical clustering analysis, obtaining four subpopulations (CL): CL1 (slow/non-linear), CL2 (slow/linear), CL3 (fast/non-linear), and CL4 (fast/linear). We detected spermatozoa lysis, especially in ASW. Sperm motility was higher for SUC and decreased with time. The subpopulation proportions varied with time and activating treatment, showing both an increase in CL1 and CL2 and a decrease in CL3 and CL4 with time. Both CL3 and CL4 were higher in samples activated with SUC, at least in early post-activation. Proportions of CL3 and CL4 at 15 s were associated with higher quality at 60 s and with lower lysis. A second clustering analysis was conducted, classifying the males accordingly to their motility subpopulations. This analysis showed a high heterogeneity between samples. Subpopulation analysis of CASA data can be applied to Solea spermatozoa, allowing identification of potentially interesting sperm subpopulations. Future studies might benefit from these techniques to establish the relationship of these subpopulations with fish sperm quality and fertility, helping to characterize males according to their reproductive potential.


Subject(s)
Flatfishes/physiology , Sperm Motility/physiology , Animals , Cluster Analysis , Male , Models, Biological
14.
J Vet Diagn Invest ; 20(2): 215-9, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18319436

ABSTRACT

The suitability of nested reverse transcription polymerase chain reaction (nRT-PCR) to detect betanodavirus in blood samples from naturally infected Senegalese sole (Solea senegalensis) was evaluated in comparison with other diagnostic methods. Results indicated that histologic examination of brain lesions could be regarded as the most consistent indicator of nodavirus infection in this species. The nRT-PCR showed low to moderate levels of detection; the best values were obtained in brain samples followed by blood samples. Inoculation of SSN-1 and SAF-1 cells with fish samples did not cause cytopathic effect, although virus was detected by reverse transcription polymerase chain reaction in approximately 25% of the SSN-1 inoculated wells. The efficiency of detection of the viral genome was dramatically increased by the use of nRT-PCR, reaching 90.6% of positives in brain samples and 84.4% in blood samples. The sensitivity and the negative predictive value of nRT-PCR in blood samples were slightly lower than those obtained using brain samples. Nevertheless, it is suggested that the advantage of being able to perform diagnosis on live fish adequately counterbalances the slightly lower sensitivity of nRT-PCR on blood samples. This technique is proposed as a useful tool, not only for the selection of nodavirus-free breeders but also to check the fish status during ongrowing.


Subject(s)
Brain Diseases/veterinary , Fish Diseases/virology , Flatfishes , Nodaviridae/isolation & purification , RNA Virus Infections/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Animals , Brain Diseases/blood , Brain Diseases/virology , Cell Line , Cytopathogenic Effect, Viral , Fish Diseases/blood , Nodaviridae/genetics , Predictive Value of Tests , RNA Virus Infections/blood , RNA Virus Infections/virology , RNA, Viral/chemistry , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity
15.
Chemosphere ; 190: 166-173, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28987405

ABSTRACT

The influence of nutritional regime and water temperature on depuration rates of OA-group toxins in the wedge shell Donax trunculus was examined by exposing naturally contaminated specimens to three nutritional regimes (microalgae, commercial paste of microalgae, and starvation) for 14 days at 16 °C and 20 °C. Total OA was quantified in the whole soft tissues of the individuals collected in days 2, 4, 6, 8, 10, 12 and 14. Mortality, dry weight, condition index, gross biochemical composition and gametogenic stages were surveyed. Low variation of glycogen and carbohydrates during the experiments suggest that wedge shells were under non-dramatic stress conditions. Wedge shells fed with non-toxic diets showed similar depuration rates being 15 and 38% higher than in starvation, at 16 and 20 °C, respectively. Depuration rates under non-toxic diets at 20 °C were 71% higher than at 16 °C. These results highlight the influence of water temperature on the depuration rate of total OA accumulated by D. trunculus, even when the increase is of only 4 °C, as commonly observed in week time scales in the southern Portuguese coastal waters. These results open the possibility of a faster release of OA in harvested wedge shells translocated to depuration systems when under a slight increase of water temperature.


Subject(s)
Bivalvia/chemistry , Environmental Restoration and Remediation/methods , Nutrition Assessment , Okadaic Acid/isolation & purification , Temperature , Animals , Carbohydrates/analysis , Diet/adverse effects , Glycogen/analysis , Marine Toxins/isolation & purification
16.
Front Microbiol ; 8: 204, 2017.
Article in English | MEDLINE | ID: mdl-28261166

ABSTRACT

As wild fish stocks decline worldwide, land-based fish rearing is likely to be of increasing relevance to feeding future human generations. Little is known about the structure and role of microbial communities in fish aquaculture, particularly at larval developmental stages where the fish microbiome develops and host animals are most susceptible to disease. We employed next-generation sequencing (NGS) of 16S rRNA gene reads amplified from total community DNA to reveal the structure of bacterial communities in a gilthead seabream (Sparus aurata) larviculture system. Early- (2 days after hatching) and late-stage (34 days after hatching) fish larvae presented remarkably divergent bacterial consortia, with the genera Pseudoalteromonas, Marinomonas, Acinetobacter, and Acidocella (besides several unclassified Alphaproteobacteria) dominating the former, and Actinobacillus, Streptococcus, Massilia, Paracoccus, and Pseudomonas being prevalent in the latter. A significant reduction in rearing-water bacterial diversity was observed during the larviculture trial, characterized by higher abundance of the Cryomorphaceae family (Bacteroidetes), known to populate microniches with high organic load, in late-stage rearing water in comparison with early-stage rearing-water. Furthermore, we observed the recruitment, into host tissues, of several bacterial phylotypes-including putative pathogens as well as mutualists-that were detected at negligible densities in rearing-water or in the live feed (i.e., rotifers and artemia). These results suggest that, besides host-driven selective forces, both the live feed and the surrounding rearing environment contribute to shaping the microbiome of farmed gilthead sea-bream larvae, and that a differential establishment of host-associated bacteria takes place during larval development.

17.
PLoS One ; 12(10): e0186542, 2017.
Article in English | MEDLINE | ID: mdl-29053706

ABSTRACT

Cryopreservation of Senegalese sole sperm can represent an alternative to overcome some reproductive problems of this species. However, it is important to guarantee the safe use of cryopreserved sperm by selecting an appropriate protocol according to a high demand quality need to be ensured. It has been demonstrated that traditional assays such as motility and viability do not provide enough information to identify specific damage caused by cryopreservation process (freezing and thawing). Specific tests, including lipid peroxidation and DNA damage, should be performed. In the present study, motility and lipid peroxidation were performed as specific tests allowing us to discard cryopreservation conditions such as methanol as internal cryoprotectant and bovine serum albumin as external cryoprotectant. In addition, a caspase 3/7 detection by flow cytometry was performed to analyze apoptosis activity in the best selected conditions. Moreover, new highly sensitive tests based on transcript number detection have recently been described in fish sperm cryopreservation. For this reason, a transcript level detection assay was performed on certain oxidative and chaperone genes related to fertilization ability and embryo development (hsp70, hsp90BB, hsp90AA, gpx) to select the best cryopreservation conditions. DMSO+ egg yolk proved to be the best cryoprotectant combination in terms of transcript level. This study describes an optimized cryopreservation protocol for Solea senegalensis sperm demonstrating for the first time that transcript degradation is the most sensitive predictor of cell status in this species after cryopreservation.


Subject(s)
Cryopreservation/methods , Flatfishes , Semen Preservation/methods , Animals , Male , Spermatozoa/metabolism
18.
Mar Pollut Bull ; 96(1-2): 188-96, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26003385

ABSTRACT

The clam Ruditapes decussatus was transplanted from a natural recruitment area of Ria Formosa to three sites, surveyed for nutrients in water and sediments. Specimens were sampled monthly for determination of Escherichia coli, condition index and gonadal index. Higher nutrient values in low tide reflect drainage, anthropogenic sources or sediment regeneration, emphasising the importance of water mixing in the entire lagoon driven by the tide. Despite the increase of effluent discharges in summer due to tourism, nutrient concentrations and E. coli in clams were lower in warmer periods. The bactericide effect of temperature and solar radiation was better defined in clams from the inlet channel site than from sites closer to urban effluents. High temperature in summer and torrential freshwater inputs to Ria Formosa may anticipate climate change scenarios for south Europe. Seasonal variation of nutrients and clam contamination may thus point to possible alterations in coastal lagoons and their ecosystem services.


Subject(s)
Bivalvia/metabolism , Escherichia coli/growth & development , Water Pollutants/metabolism , Animals , Bivalvia/microbiology , Climate Change , Ecosystem , Europe , Nitrogen/analysis , Phosphorus/analysis , Portugal , Seasons , Water Microbiology , Water Pollutants/analysis
19.
Genome Announc ; 3(3)2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26044435

ABSTRACT

To shed light on the putative host-mediated lifestyle of the quintessential marine symbiont Aliivibrio fischeri, and on the symbiosis versus potentially pathogenic features of bacteria associated with farmed fish, we report the draft genome sequence of A. fischeri strain 5LC, a bacterium retrieved from gilthead sea bream (Sparus aurata) larvae.

20.
Mar Pollut Bull ; 64(2): 252-62, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22197556

ABSTRACT

The microbiological pollution of coastal waters is a major problem, especially in shellfish areas. This article shows the faecal contamination in bivalves from the Ria Formosa Lagoon (south coast of Portugal) along 20 years (1990-2009). The highest values of Escherichia coli in bivalves were obtained during the 90s, related with the discharge of untreated wastewaters and agricultural runoff. In the 2000s contamination levels decreased, with 83% of the population already served by new or remodelled sewage treatment plants. The highest levels were found in bivalves close to the largest city, where punctual and diffuse contamination sources still exist. Bivalves from the less impacted site showed the lowest contamination, an area with more water renewal. Seasonally, the highest levels were in autumn and winter, due to the runoff of waters from rainfall. These were opposite to those in spring and summer, when the highest temperatures and salinity showed a bactericidal effect.


Subject(s)
Bivalvia/microbiology , Environmental Monitoring , Escherichia coli/physiology , Animals , Escherichia coli/isolation & purification , Models, Theoretical , Portugal , Seasons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL