Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell ; 175(3): 615-632, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340033

ABSTRACT

The derivation of human embryonic stem cells (hESCs) and the stunning discovery that somatic cells can be reprogrammed into human induced pluripotent stem cells (hiPSCs) holds the promise to revolutionize biomedical research and regenerative medicine. In this Review, we focus on disorders of the central nervous system and explore how advances in human pluripotent stem cells (hPSCs) coincide with evolutions in genome engineering and genomic technologies to provide realistic opportunities to tackle some of the most devastating complex disorders.


Subject(s)
Central Nervous System Diseases/therapy , Gene Editing/methods , Stem Cell Transplantation/methods , Translational Research, Biomedical/methods , Animals , Central Nervous System Diseases/genetics , Humans
2.
Cell ; 163(1): 218-29, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26406378

ABSTRACT

Mammalian DNA methylation plays an essential role in development. To date, only snapshots of different mouse and human cell types have been generated, providing a static view on DNA methylation. To enable monitoring of methylation status as it changes over time, we establish a reporter of genomic methylation (RGM) that relies on a minimal imprinted gene promoter driving a fluorescent protein. We show that insertion of RGM proximal to promoter-associated CpG islands reports the gain or loss of DNA methylation. We further utilized RGM to report endogenous methylation dynamics of non-coding regulatory elements, such as the pluripotency-specific super enhancers of Sox2 and miR290. Loci-specific DNA methylation changes and their correlation with transcription were visualized during cell-state transition following differentiation of mouse embryonic stem cells and during reprogramming of somatic cells to pluripotency. RGM will allow the investigation of dynamic methylation changes during development and disease at single-cell resolution.


Subject(s)
DNA Methylation , Single-Cell Analysis , Animals , CpG Islands , DNA Modification Methylases/metabolism , Embryonic Stem Cells , Enhancer Elements, Genetic , Humans , Mice , MicroRNAs/metabolism , Promoter Regions, Genetic , SOXB1 Transcription Factors/metabolism
3.
Cell ; 155(6): 1351-64, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24290359

ABSTRACT

Parkinson's disease (PD) is characterized by loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). An association has been reported between PD and exposure to mitochondrial toxins, including environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived stem cell model of PD allowing comparison of A53T α-synuclein (α-syn) mutant cells and isogenic mutation-corrected controls, we identify mitochondrial toxin-induced perturbations in A53T α-syn A9 DA neurons (hNs). We report a pathway whereby basal and toxin-induced nitrosative/oxidative stress results in S-nitrosylation of transcription factor MEF2C in A53T hNs compared to corrected controls. This redox reaction inhibits the MEF2C-PGC1α transcriptional network, contributing to mitochondrial dysfunction and apoptotic cell death. Our data provide mechanistic insight into gene-environmental interaction (GxE) in the pathogenesis of PD. Furthermore, using small-molecule high-throughput screening, we identify the MEF2C-PGC1α pathway as a therapeutic target to combat PD.


Subject(s)
Gene-Environment Interaction , Mitochondria/drug effects , Paraquat/toxicity , Parkinson Disease/genetics , Parkinson Disease/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , MEF2 Transcription Factors , Mutation/drug effects , Neurons/metabolism , Oxidative Stress , Parkinson Disease/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Reactive Nitrogen Species/metabolism , Substantia Nigra/metabolism , Transcription Factors/metabolism , Transcription, Genetic , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
4.
Mol Cell ; 75(5): 905-920.e6, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31422875

ABSTRACT

Variable levels of DNA methylation have been reported at tissue-specific differential methylation regions (DMRs) overlapping enhancers, including super-enhancers (SEs) associated with key cell identity genes, but the mechanisms responsible for this intriguing behavior are not well understood. We used allele-specific reporters at the endogenous Sox2 and Mir290 SEs in embryonic stem cells and found that the allelic DNA methylation state is dynamically switching, resulting in cell-to-cell heterogeneity. Dynamic DNA methylation is driven by the balance between DNA methyltransferases and transcription factor binding on one side and co-regulated with the Mediator complex recruitment and H3K27ac level changes at regulatory elements on the other side. DNA methylation at the Sox2 and the Mir290 SEs is independently regulated and has distinct consequences on the cellular differentiation state. Dynamic allele-specific DNA methylation at the two SEs was also seen at different stages in preimplantation embryos, revealing that methylation heterogeneity occurs in vivo.


Subject(s)
Cell Differentiation/physiology , DNA Methylation/physiology , Enhancer Elements, Genetic/physiology , Mouse Embryonic Stem Cells/metabolism , Transcription, Genetic/physiology , Animals , Cell Line , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Mouse Embryonic Stem Cells/cytology , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
5.
Mol Cell ; 73(5): 1001-1014.e8, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30527540

ABSTRACT

In Parkinson's disease (PD), α-synuclein (αS) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in αS or lipid/fatty acid homeostasis affect each other. Lipidomic profiling of human αS-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of αS dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased αS yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in αS-overexpressing rat neurons. In a C. elegans model, SCD knockout prevented αS-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on αS homeostasis: in human neural cells, excess OA caused αS inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for αS-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.


Subject(s)
Antiparkinson Agents/pharmacology , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Lipid Metabolism/drug effects , Metabolomics/methods , Neurons/drug effects , Parkinson Disease/drug therapy , Stearoyl-CoA Desaturase/antagonists & inhibitors , alpha-Synuclein/toxicity , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Cell Line , Cerebral Cortex/drug effects , Cerebral Cortex/enzymology , Cerebral Cortex/pathology , Diglycerides/metabolism , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/enzymology , Dopaminergic Neurons/pathology , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/enzymology , Induced Pluripotent Stem Cells/pathology , Lipid Droplets/drug effects , Lipid Droplets/enzymology , Mice, Inbred C57BL , Mice, Transgenic , Molecular Targeted Therapy , Nerve Degeneration , Neural Stem Cells/drug effects , Neural Stem Cells/enzymology , Neural Stem Cells/pathology , Neurons/enzymology , Neurons/pathology , Oleic Acid/metabolism , Parkinson Disease/enzymology , Parkinson Disease/genetics , Parkinson Disease/pathology , Rats, Sprague-Dawley , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Stearoyl-CoA Desaturase/metabolism , Triglycerides/metabolism , alpha-Synuclein/genetics
6.
Cell ; 146(2): 318-31, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21757228

ABSTRACT

Patient-specific induced pluripotent stem cells (iPSCs) derived from somatic cells provide a unique tool for the study of human disease, as well as a promising source for cell replacement therapies. One crucial limitation has been the inability to perform experiments under genetically defined conditions. This is particularly relevant for late age onset disorders in which in vitro phenotypes are predicted to be subtle and susceptible to significant effects of genetic background variations. By combining zinc finger nuclease (ZFN)-mediated genome editing and iPSC technology, we provide a generally applicable solution to this problem, generating sets of isogenic disease and control human pluripotent stem cells that differ exclusively at either of two susceptibility variants for Parkinson's disease by modifying the underlying point mutations in the α-synuclein gene. The robust capability to genetically correct disease-causing point mutations in patient-derived hiPSCs represents significant progress for basic biomedical research and an advance toward hiPSC-based cell replacement therapies.


Subject(s)
Parkinson Disease/pathology , Pluripotent Stem Cells , Point Mutation , Cell Line , Embryonic Stem Cells , Genetic Engineering , Genome-Wide Association Study , Humans , Mutagenesis , Oligonucleotides/metabolism , alpha-Synuclein/genetics
7.
Cell ; 136(5): 964-77, 2009 Mar 06.
Article in English | MEDLINE | ID: mdl-19269371

ABSTRACT

Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients represent a powerful tool for biomedical research and may provide a source for replacement therapies. However, the use of viruses encoding the reprogramming factors represents a major limitation of the current technology since even low vector expression may alter the differentiation potential of the iPSCs or induce malignant transformation. Here, we show that fibroblasts from five patients with idiopathic Parkinson's disease can be efficiently reprogrammed and subsequently differentiated into dopaminergic neurons. Moreover, we derived hiPSCs free of reprogramming factors using Cre-recombinase excisable viruses. Factor-free hiPSCs maintain a pluripotent state and show a global gene expression profile, more closely related to hESCs than to hiPSCs carrying the transgenes. Our results indicate that residual transgene expression in virus-carrying hiPSCs can affect their molecular characteristics and that factor-free hiPSCs therefore represent a more suitable source of cells for modeling of human disease.


Subject(s)
Parkinson Disease/metabolism , Pluripotent Stem Cells/pathology , Cell Differentiation , Cellular Reprogramming , Dopamine/metabolism , Fibroblasts/metabolism , Humans , Neurons/metabolism
8.
Nature ; 533(7601): 95-9, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27096366

ABSTRACT

Genome-wide association studies (GWAS) have identified numerous genetic variants associated with complex diseases, but mechanistic insights are impeded by a lack of understanding of how specific risk variants functionally contribute to the underlying pathogenesis. It has been proposed that cis-acting effects of non-coding risk variants on gene expression are a major factor for phenotypic variation of complex traits and disease susceptibility. Recent genome-scale epigenetic studies have highlighted the enrichment of GWAS-identified variants in regulatory DNA elements of disease-relevant cell types. Furthermore, single nucleotide polymorphism (SNP)-specific changes in transcription factor binding are correlated with heritable alterations in chromatin state and considered a major mediator of sequence-dependent regulation of gene expression. Here we describe a novel strategy to functionally dissect the cis-acting effect of genetic risk variants in regulatory elements on gene expression by combining genome-wide epigenetic information with clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in human pluripotent stem cells. By generating a genetically precisely controlled experimental system, we identify a common Parkinson's disease associated risk variant in a non-coding distal enhancer element that regulates the expression of α-synuclein (SNCA), a key gene implicated in the pathogenesis of Parkinson's disease. Our data suggest that the transcriptional deregulation of SNCA is associated with sequence-dependent binding of the brain-specific transcription factors EMX2 and NKX6-1. This work establishes an experimental paradigm to functionally connect genetic variation with disease-relevant phenotypes.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Genetic Predisposition to Disease/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , Alleles , Brain/metabolism , CRISPR-Cas Systems/genetics , Epigenesis, Genetic/genetics , Genetic Engineering , Genome, Human/genetics , Homeodomain Proteins/metabolism , Humans , Models, Genetic , Pluripotent Stem Cells/metabolism , Risk , Transcription Factors/metabolism
9.
Blood ; 122(8): 1341-9, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23741009

ABSTRACT

Long-term engraftment of allogeneic cells necessitates eluding immune-mediated rejection, which is currently achieved by matching for human leukocyte antigen (HLA) expression, immunosuppression, and/or delivery of donor-derived cells to sanctuary sites. Genetic engineering provides an alternative approach to avoid clearance of cells that are recognized as "non-self" by the recipient. To this end, we developed designer zinc finger nucleases and employed a "hit-and-run" approach to genetic editing for selective elimination of HLA expression. Electro-transfer of mRNA species coding for these engineered nucleases completely disrupted expression of HLA-A on human T cells, including CD19-specific T cells. The HLA-A(neg) T-cell pools can be enriched and evade lysis by HLA-restricted cytotoxic T-cell clones. Recognition by natural killer cells of cells that had lost HLA expression was circumvented by enforced expression of nonclassical HLA molecules. Furthermore, we demonstrate that zinc finger nucleases can eliminate HLA-A expression from embryonic stem cells, which broadens the applicability of this strategy beyond infusing HLA-disparate immune cells. These findings establish that clinically appealing cell types derived from donors with disparate HLA expression can be genetically edited to evade an immune response and provide a foundation whereby cells from a single donor can be administered to multiple recipients.


Subject(s)
Deoxyribonucleases/genetics , Histocompatibility Antigens Class I/metabolism , Stem Cell Transplantation/methods , Transplantation, Homologous , Antigens, CD19/metabolism , Base Sequence , Cell Differentiation , Cytotoxicity, Immunologic/immunology , Electroporation , Embryonic Stem Cells/cytology , Gene Transfer Techniques , HEK293 Cells , Humans , Leukocytes, Mononuclear/cytology , Molecular Sequence Data , Protein Engineering , T-Lymphocytes/immunology , Zinc Fingers
10.
bioRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38405931

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder caused by complex genetic and environmental factors. Genome-edited human pluripotent stem cells (hPSCs) offer the uniique potential to advance our understanding of PD etiology by providing disease-relevant cell-types carrying patient mutations along with isogenic control cells. To facilitate this experimental approach, we generated a collection of 55 cell lines genetically engineered to harbor mutations in genes associated with monogenic PD (SNCA A53T, SNCA A30P, PRKN Ex3del, PINK1 Q129X, DJ1/PARK7 Ex1-5del, LRRK2 G2019S, ATP13A2 FS, FBXO7 R498X/FS, DNAJC6 c.801 A>G+FS, SYNJ1 R258Q/FS, VPS13C A444P, VPS13C W395C, GBA1 IVS2+1). All mutations were generated in a fully characterized and sequenced female human embryonic stem cell (hESC) line (WIBR3; NIH approval number NIHhESC-10-0079) using CRISPR/Cas9 or prime editing-based approaches. We implemented rigorous quality controls, including high density genotyping to detect structural variants and confirm the genomic integrity of each cell line. This systematic approach ensures the high quality of our stem cell collection, highlights differences between conventional CRISPR/Cas9 and prime editing and provides a roadmap for how to generate gene-edited hPSCs collections at scale in an academic setting. We expect that our isogenic stem cell collection will become an accessible platform for the study of PD, which can be used by investigators to understand the molecular pathophysiology of PD in a human cellular setting.

11.
Proc Natl Acad Sci U S A ; 107(20): 9222-7, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20442331

ABSTRACT

Human and mouse embryonic stem cells (ESCs) are derived from blastocyst-stage embryos but have very different biological properties, and molecular analyses suggest that the pluripotent state of human ESCs isolated so far corresponds to that of mouse-derived epiblast stem cells (EpiSCs). Here we rewire the identity of conventional human ESCs into a more immature state that extensively shares defining features with pluripotent mouse ESCs. This was achieved by ectopic induction of Oct4, Klf4, and Klf2 factors combined with LIF and inhibitors of glycogen synthase kinase 3beta (GSK3beta) and mitogen-activated protein kinase (ERK1/2) pathway. Forskolin, a protein kinase A pathway agonist which can induce Klf4 and Klf2 expression, transiently substitutes for the requirement for ectopic transgene expression. In contrast to conventional human ESCs, these epigenetically converted cells have growth properties, an X-chromosome activation state (XaXa), a gene expression profile, and a signaling pathway dependence that are highly similar to those of mouse ESCs. Finally, the same growth conditions allow the derivation of human induced pluripotent stem (iPS) cells with similar properties as mouse iPS cells. The generation of validated "naïve" human ESCs will allow the molecular dissection of a previously undefined pluripotent state in humans and may open up new opportunities for patient-specific, disease-relevant research.


Subject(s)
Cell Dedifferentiation/physiology , Embryonic Stem Cells/physiology , Pluripotent Stem Cells/physiology , Transcriptional Activation/physiology , Animals , Colforsin/pharmacology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Expression Profiling , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Mice , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/metabolism , Species Specificity , Transcriptional Activation/drug effects
12.
Proc Natl Acad Sci U S A ; 107(36): 15921-6, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20798034

ABSTRACT

Recent advances in deriving induced pluripotent stem (iPS) cells from patients offer new possibilities for biomedical research and clinical applications, as these cells could be used for autologous transplantation. We differentiated iPS cells from patients with Parkinson's disease (PD) into dopaminergic (DA) neurons and show that these DA neurons can be transplanted without signs of neurodegeneration into the adult rodent striatum. The PD patient iPS (PDiPS) cell-derived DA neurons survived at high numbers, showed arborization, and mediated functional effects in an animal model of PD as determined by reduction of amphetamine- and apomorphine-induced rotational asymmetry, but only a few DA neurons projected into the host striatum at 16 wk after transplantation. We next applied FACS for the neural cell adhesion molecule NCAM on differentiated PDiPS cells before transplantation, which resulted in surviving DA neurons with functional effects on amphetamine-induced rotational asymmetry in a 6-OHDA animal model of PD. Morphologically, we found that PDiPS cell-derived non-DA neurons send axons along white matter tracts into specific close and remote gray matter target areas in the adult brain. Such findings establish the transplantation of human PDiPS cell-derived neurons as a long-term in vivo method to analyze potential disease-related changes in a physiological context. Our data also demonstrate proof of principle of survival and functional effects of PDiPS cell-derived DA neurons in an animal model of PD and encourage further development of differentiation protocols to enhance growth and function of implanted PDiPS cell-derived DA neurons in regard to potential therapeutic applications.


Subject(s)
Parkinson Disease/surgery , Pluripotent Stem Cells/cytology , Animals , Humans , Parkinson Disease/pathology , Rats
13.
Nature ; 442(7104): 823-6, 2006 Aug 17.
Article in English | MEDLINE | ID: mdl-16799564

ABSTRACT

The hope of developing new transplantation therapies for degenerative diseases is limited by inefficient stem cell growth and immunological incompatibility with the host. Here we show that Notch receptor activation induces the expression of the specific target genes hairy and enhancer of split 3 (Hes3) and Sonic hedgehog (Shh) through rapid activation of cytoplasmic signals, including the serine/threonine kinase Akt, the transcription factor STAT3 and mammalian target of rapamycin, and thereby promotes the survival of neural stem cells. In both murine somatic and human embryonic stem cells, these positive signals are opposed by a control mechanism that involves the p38 mitogen-activated protein kinase. Transient administration of Notch ligands to the brain of adult rats increases the numbers of newly generated precursor cells and improves motor skills after ischaemic injury. These data indicate that stem cell expansion in vitro and in vivo, two central goals of regenerative medicine, may be achieved by Notch ligands through a pathway that is fundamental to development and cancer.


Subject(s)
Receptors, Notch/metabolism , Second Messenger Systems , Stem Cells/cytology , Stem Cells/metabolism , Animals , Brain/cytology , Brain/drug effects , Brain/pathology , Brain/physiopathology , Cell Count , Cell Differentiation , Cell Division , Cell Survival , Cells, Cultured , Embryo, Mammalian/cytology , Humans , Ligands , Mice , Phosphorylation , Protein Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Rats , Regenerative Medicine , STAT3 Transcription Factor/metabolism , TOR Serine-Threonine Kinases , p38 Mitogen-Activated Protein Kinases/metabolism
14.
Elife ; 112022 09 07.
Article in English | MEDLINE | ID: mdl-36069759

ABSTRACT

The recent development of prime editing (PE) genome engineering technologies has the potential to significantly simplify the generation of human pluripotent stem cell (hPSC)-based disease models. PE is a multicomponent editing system that uses a Cas9-nickase fused to a reverse transcriptase (nCas9-RT) and an extended PE guide RNA (pegRNA). Once reverse transcribed, the pegRNA extension functions as a repair template to introduce precise designer mutations at the target site. Here, we systematically compared the editing efficiencies of PE to conventional gene editing methods in hPSCs. This analysis revealed that PE is overall more efficient and precise than homology-directed repair of site-specific nuclease-induced double-strand breaks. Specifically, PE is more effective in generating heterozygous editing events to create autosomal dominant disease-associated mutations. By stably integrating the nCas9-RT into hPSCs we achieved editing efficiencies equal to those reported for cancer cells, suggesting that the expression of the PE components, rather than cell-intrinsic features, limit PE in hPSCs. To improve the efficiency of PE in hPSCs, we optimized the delivery modalities for the PE components. Delivery of the nCas9-RT as mRNA combined with synthetically generated, chemically-modified pegRNAs and nicking guide RNAs improved editing efficiencies up to 13-fold compared with transfecting the PE components as plasmids or ribonucleoprotein particles. Finally, we demonstrated that this mRNA-based delivery approach can be used repeatedly to yield editing efficiencies exceeding 60% and to correct or introduce familial mutations causing Parkinson's disease in hPSCs.


From muscles to nerves, our body is formed of many kinds of cells which can each respond slightly differently to the same harmful genetic changes. Understanding the exact relationship between mutations and cell-type specific function is essential to better grasp how conditions such as Parkinson's disease or amyotrophic lateral sclerosis progress and can be treated. Stem cells could be an important tool in that effort, as they can be directed to mature into many cell types in the laboratory. Yet it remains difficult to precisely introduce disease-relevant mutations in these cells. To remove this obstacle, Li et al. focused on prime editing, a cutting-edge 'search and replace' approach which can introduce new genetic information into a specific DNA sequence. However, it was unclear whether this technique could be used to efficiently create stem cell models of human diseases. A first set of experiments showed that prime editing is superior to conventional approaches when generating mutated genes in stem cells. Li et al. then further improved the efficiency and precision of the method by tweaking how prime editing components are delivered into the cells. The refined approach could be harnessed to quickly generate large numbers of stem cells carrying mutations associated with Parkinson's disease; crucially, prime editing could then also be used to revert a mutated gene back to its healthy form. The improved prime editing approach developed by Li et al. removes a major hurdle for scientists hoping to use stem cells to study genetic diseases. This could potentially help to unlock progress in how we understand and ultimately treat these conditions.


Subject(s)
Pluripotent Stem Cells , RNA, Guide, Kinetoplastida , Humans , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Gene Editing/methods , Pluripotent Stem Cells/metabolism , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , RNA, Messenger/metabolism , RNA-Directed DNA Polymerase , Ribonucleoproteins/metabolism , CRISPR-Cas Systems
15.
Proc Natl Acad Sci U S A ; 105(15): 5856-61, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18391196

ABSTRACT

The long-term goal of nuclear transfer or alternative reprogramming approaches is to create patient-specific donor cells for transplantation therapy, avoiding immunorejection, a major complication in current transplantation medicine. It was recently shown that the four transcription factors Oct4, Sox2, Klf4, and c-Myc induce pluripotency in mouse fibroblasts. However, the therapeutic potential of induced pluripotent stem (iPS) cells for neural cell replacement strategies remained unexplored. Here, we show that iPS cells can be efficiently differentiated into neural precursor cells, giving rise to neuronal and glial cell types in culture. Upon transplantation into the fetal mouse brain, the cells migrate into various brain regions and differentiate into glia and neurons, including glutamatergic, GABAergic, and catecholaminergic subtypes. Electrophysiological recordings and morphological analysis demonstrated that the grafted neurons had mature neuronal activity and were functionally integrated in the host brain. Furthermore, iPS cells were induced to differentiate into dopamine neurons of midbrain character and were able to improve behavior in a rat model of Parkinson's disease upon transplantation into the adult brain. We minimized the risk of tumor formation from the grafted cells by separating contaminating pluripotent cells and committed neural cells using fluorescence-activated cell sorting. Our results demonstrate the therapeutic potential of directly reprogrammed fibroblasts for neuronal cell replacement in the animal model.


Subject(s)
Brain/pathology , Fibroblasts/cytology , Neurons/cytology , Neurons/physiology , Parkinson Disease/therapy , Stem Cell Transplantation/methods , Animals , Behavior, Animal , Brain/embryology , Cell Differentiation , Culture Techniques , Electrophysiology , Kruppel-Like Factor 4 , Mice , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Rats
16.
Stroke ; 38(1): 153-61, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17122419

ABSTRACT

BACKGROUND AND PURPOSE: Because fibroblast growth factor 2 is a mitogen for central nervous system stem cells, we explored whether long-term fibroblast growth factor 2 delivery to the brain can improve functional outcome and induce cortical neurogenesis after ischemia. METHODS: Rats underwent permanent distal middle cerebral artery occlusion resulting in an ischemic injury limited to the cortex. We used an adeno-associated virus transfection system to induce long-term fibroblast growth factor 2 expression and monitored behavioral and histological changes. RESULTS: Treatment increased the number of proliferating cells and improved motor behavior. Neurogenesis continued throughout 90 days after the ischemia, and the occurrence of newly generated cells with characteristics of neural precursors and immature neurons was most evident 90 days after treatment. CONCLUSIONS: Focal cortical ischemia elicits an ongoing neurogenic response that can be enhanced with fibroblast growth factor 2 leading to improved functional outcome.


Subject(s)
Brain Infarction/therapy , Brain Ischemia/therapy , Cerebral Cortex/metabolism , Fibroblast Growth Factor 2/genetics , Genetic Therapy/methods , Nerve Regeneration/genetics , Animals , Biomarkers/metabolism , Brain Infarction/genetics , Brain Infarction/physiopathology , Brain Ischemia/genetics , Brain Ischemia/physiopathology , Bromodeoxyuridine , Cell Proliferation , Cerebral Cortex/physiopathology , Cerebral Cortex/virology , Dependovirus/genetics , Disease Models, Animal , Genetic Vectors/genetics , Green Fluorescent Proteins , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Nerve Regeneration/physiology , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Rats , Rats, Inbred SHR , Recovery of Function/genetics , Stem Cells/cytology , Stem Cells/metabolism , Transfection/methods , Treatment Outcome
17.
Cell Rep ; 21(8): 2171-2182, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29166608

ABSTRACT

Mutations in PARK6 (PINK1) and PARK2 (Parkin) are linked to rare familial cases of Parkinson's disease (PD). Mutations in these genes result in pathological dysregulation of mitophagy, contributing to neurodegeneration. Here, we report that environmental factors causing a specific posttranslational modification on PINK1 can mimic these genetic mutations. We describe a molecular mechanism for impairment of mitophagy via formation of S-nitrosylated PINK1 (SNO-PINK1). Mitochondrial insults simulating age- or environmental-related stress lead to increased SNO-PINK1, inhibiting its kinase activity. SNO-PINK1 decreases Parkin translocation to mitochondrial membranes, disrupting mitophagy in cell lines and human-iPSC-derived neurons. We find levels of SNO-PINK1 in brains of α-synuclein transgenic PD mice similar to those in cell-based models, indicating the pathophysiological relevance of our findings. Importantly, SNO-PINK1-mediated deficits in mitophagy contribute to neuronal cell death. These results reveal a direct molecular link between nitrosative stress, SNO-PINK1 formation, and mitophagic dysfunction that contributes to the pathogenesis of PD.


Subject(s)
Mitochondria/genetics , Mitophagy/genetics , Parkinson Disease/genetics , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Mitochondria/metabolism , Mutation/genetics , Neurons/metabolism , Parkinson Disease/metabolism , Protein Kinases/metabolism
18.
Cell Stem Cell ; 16(4): 341-2, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25842969

ABSTRACT

Understanding how genetic risk variants contribute to complex diseases is crucial for predicting disease susceptibility and developing patient-tailored therapies. In this issue of Cell Stem Cell, Young et al. (2015) dissect the function of common non-coding risk haplotypes in the SORL1 locus in the pathogenesis of sporadic Alzheimer's disease using patient-derived induced pluripotent stem cells.


Subject(s)
Alzheimer Disease/genetics , Induced Pluripotent Stem Cells/physiology , LDL-Receptor Related Proteins/genetics , Membrane Transport Proteins/genetics , Neurons/physiology , Serum Amyloid A Protein/metabolism , Humans
19.
Nat Commun ; 6: 7314, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26076669

ABSTRACT

ß-Sheet-rich α-synuclein (αS) aggregates characterize Parkinson's disease (PD). αS was long believed to be a natively unfolded monomer, but recent work suggests it also occurs in α-helix-rich tetramers. Crosslinking traps principally tetrameric αS in intact normal neurons, but not after cell lysis, suggesting a dynamic equilibrium. Here we show that freshly biopsied normal human brain contains abundant αS tetramers. The PD-causing mutation A53T decreases tetramers in mouse brain. Neurons derived from an A53T patient have decreased tetramers. Neurons expressing E46K do also, and adding 1-2 E46K-like mutations into the canonical αS repeat motifs (KTKEGV) further reduces tetramers, decreases αS solubility and induces neurotoxicity and round inclusions. The other three fPD missense mutations likewise decrease tetramer:monomer ratios. The destabilization of physiological tetramers by PD-causing missense mutations and the neurotoxicity and inclusions induced by markedly decreasing tetramers suggest that decreased α-helical tetramers and increased unfolded monomers initiate pathogenesis. Tetramer-stabilizing compounds should prevent this.


Subject(s)
Brain/metabolism , Neurons/metabolism , Parkinson Disease/genetics , alpha-Synuclein/genetics , Animals , Enzyme-Linked Immunosorbent Assay , Humans , Immunoblotting , Immunohistochemistry , Induced Pluripotent Stem Cells , Mice , Mutation, Missense , Parkinson Disease/metabolism , Protein Structure, Quaternary/genetics , Rats , Rats, Sprague-Dawley , alpha-Synuclein/metabolism
20.
Stem Cell Reports ; 5(6): 933-945, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26610635

ABSTRACT

As a group, we met to discuss the current challenges for creating meaningful patient-specific in vitro models to study brain disorders. Although the convergence of findings between laboratories and patient cohorts provided us confidence and optimism that hiPSC-based platforms will inform future drug discovery efforts, a number of critical technical challenges remain. This opinion piece outlines our collective views on the current state of hiPSC-based disease modeling and discusses what we see to be the critical objectives that must be addressed collectively as a field.


Subject(s)
Brain Diseases/pathology , Brain/pathology , Induced Pluripotent Stem Cells/pathology , Neurogenesis , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Brain Diseases/drug therapy , Brain Diseases/genetics , Brain Diseases/physiopathology , Drug Discovery/methods , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mosaicism , Precision Medicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL