Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Enzyme Inhib Med Chem ; 37(1): 349-372, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34923887

ABSTRACT

In this study, different assortments of 2-arylquinolines and 2,6-diarylquinolines have been developed. Recently, we have developed a new series of 6,7-dimethoxy-4-alkoxy-2-arylquinolines as Topoisomerase I (TOP1) inhibitors with potent anticancer activity. Utilising the SAR outputs from this study, we tried to enhance anticancer and TOP1 inhibitory activities. Though target quinolines demonstrated potent antiproliferative effect, specifically against colorectal cancer DLD-1 and HCT-116, they showed weak TOP1 inhibition which may be attributable to their non-coplanarity. Thereafter, screening against kinase panel revealed their dual inhibitory activity against EGFR and FAK. Quinolines 6f, 6h, 6i, and 20f were the most potent EGFR inhibitors (IC50s = 25.39, 20.15, 22.36, and 24.81 nM, respectively). Meanwhile, quinolines 6f, 6h, 6i, 16d, and 20f exerted the best FAK inhibition (IC50s = 22.68, 14.25, 18.36, 17.36, and 15.36 nM, respectively). Finally, molecular modelling was employed to justify the promising EGFR/FAK inhibition. The study outcomes afforded the first reported quinolines with potent EGFR/FAK dual inhibition.


Subject(s)
Antineoplastic Agents/pharmacology , Focal Adhesion Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Focal Adhesion Kinase 1/metabolism , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
2.
Eur J Med Chem ; 238: 114412, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35551035

ABSTRACT

In the current work, we adopted the tail/dual tail approaches to design and synthesize the benzenesulfonamide derivatives 6a-b, 8, 10a-b, 12a-b, 14, and 16 as new SLC-0111 analogs endowed with carbonic anhydrase (CA) inhibitory activity. All the prepared benzenesulfonamide derivatives were tested for their inhibitory action towards hCA isoforms; hCA I, II, IX, and XII. The results revealed their ability to affect the examined isoforms in variable degrees with KI ranges: 49.3-6459 nM for CA I, 5.1-4171 nM for CA II, 9.4-945.1 nM for CA IX, and 5.2-1159 nM for CA XII. As expected, appending a second hydrophilic tail (ethanolamine) in compound 16 significantly enhanced the inhibitory activities towards hCA IX and hCA XII isoforms by about 5-fold in comparison to its single tail analogue 6c (KI = 51.5 and 28.2 nM for 6cvs. 10.2 and 5.2 nM for 16, respectively). Moreover, SAR analysis pointed out the significance of grafting the sulfamoyl functionality at para-position, as well as the incorporation of a bulky hydrophobic tail for CA inhibitory activity. The most potent hCA IX inhibitors (6f and 16) displayed efficient cell growth inhibitory activity against breast cancer cell lines; T-47D (IC50 = 19 and 10.9 µM, respectively) and MCF-7 (IC50 = 7.5 and 5.7 µM, respectively).


Subject(s)
Carbonic Anhydrase II , Carbonic Anhydrase Inhibitors , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Cell Proliferation , Molecular Structure , Structure-Activity Relationship , Sulfonamides , Benzenesulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL