Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 10(1): 931, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31969633

ABSTRACT

Wound healing assay is a simple and cost-effective in vitro assay for assessing therapeutic impacts on cell migration. Its key limitation is the possible confoundment by other cellular phenotypes, causing misinterpretation of the experimental outcome. In this study, we attempted to address this problem by developing a simple analytical approach for scoring therapeutic influences on both cell migration and cell death, while normalizing the influence of cell growth using Mitomycin C pre-treatment. By carefully mapping the relationship between cell death and wound closure rate, contribution of cell death and cell migration on the observed wound closure delay can be quantitatively separated at all drug dosing. We showed that both intrinsic cell motility difference and extrinsic factors such as cell seeding density can significantly affect final interpretation of therapeutic impacts on cellular phenotypes. Such discrepancy can be rectified by using the actual wound closure time of each treatment condition for the calculation of phenotypic scores. Finally, we demonstrated a screen for strong pharmaceutical inhibitors of cell migration in cholangiocarcinoma cell lines. Our approach enables accurate scoring of both migrastatic and cytotoxic effects, and can be easily implemented for high-throughput drug screening.


Subject(s)
Cell Migration Assays/methods , Cell Migration Inhibition , Cell Movement/drug effects , Mitomycin/pharmacology , Wound Healing/drug effects , Cell Death/drug effects , Cell Line , Cell Migration Inhibition/drug effects , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Humans
2.
Antiviral Res ; 100(1): 202-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23962772

ABSTRACT

We exploited Artemia as a double-stranded (ds)RNA-delivery system to combat viral diseases in shrimp. First, the transformed Escherichia coli (E. coli) expressing red fluorescent protein (RFP) was tested in the Artemia enrichment process. RFP signals detectable in the gut of Artemia under confocal microscope were evident for the successful encapsulation. Second, the Artemia enrichment process was performed using E. coli producing Laem-Singh virus (LSNV)-specific dsRNA, which has been previously shown to inhibit the viral infection in the black tiger shrimp Penaeus monodon by intramuscular injection and oral administration. The enriched Artemia nauplii were confirmed to contain dsRNA-LSNV by RT-PCR, and were subjected to the feeding test with P. monodon postlarvae. Quantitative RT-PCR indicated that a number of LSNV copies in most of the treated shrimp were, at least, 1000-fold lower than the untreated controls. During 11-17weeks after feeding, average body weight of the treated group was markedly increased relative to the control group. A smaller differential growth rate of the treated group as compared to the control was also noticed. These results suggested that feeding shrimp with the dsRNA-enriched Artemia can eliminate LSNV infection, which is the cause of retarded growth in P. monodon. The present study reveals for the first time the therapeutic effect of dsRNA-enriched Artemia for shrimp disease control.


Subject(s)
Artemia/virology , Escherichia coli/genetics , Gene Transfer Techniques , Penaeidae/virology , RNA, Viral/genetics , Animals , Artemia/microbiology , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/genetics , Genetic Vectors/metabolism , Penaeidae/microbiology , RNA Viruses/genetics , RNA Viruses/metabolism , RNA, Viral/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL