Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Small ; 20(33): e2312132, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38453671

ABSTRACT

As a representative in the post-lithium-ion batteries (LIBs) landscape, lithium metal batteries (LMBs) exhibit high-energy densities but suffer from low coulombic efficiencies and short cycling lifetimes due to dendrite formation and complex side reactions. Separator modification holds the most promise in overcoming these challenges because it utilizes the original elements of LMBs. In this review, separators designed to address critical issues in LMBs that are fatal to their destiny according to the target electrodes are focused on. On the lithium anode side, functional separators reduce dendrite propagation with a conductive lithiophilic layer and a uniform Li-ion channel or form a stable solid electrolyte interphase layer through the continuous release of active agents. The classification of functional separators solving the degradation stemming from the cathodes, which has often been overlooked, is summarized. Structural deterioration and the resulting leakage from cathode materials are suppressed by acidic impurity scavenging, transition metal ion capture, and polysulfide shuttle effect inhibition from functional separators. Furthermore, flame-retardant separators for preventing LMB safety issues and multifunctional separators are discussed. Further expansion of functional separators can be effectively utilized in other types of batteries, indicating that intensive and extensive research on functional separators is expected to continue in LIBs.

2.
Carbohydr Polym ; 272: 118453, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34420713

ABSTRACT

The purpose of this study was to design alginate in situ forming gel (ISFG) injectable with clinically acceptable gelation time and controlled release of hydrophobic drug. Milled or unmilled paliperidone palmitate (PPP) was used. The gelation time was controlled by varying the ratios of glucono-d-lactone (GDL) and pyridoxal 5'-phosphate (PLP) in prefilled alginate solution mixtures (ASMs) containing PPP, CaCO3, GDL and PLP for clinically acceptable injectability. However, the gelation time was varied by the alginate type (M/G ratio), storage condition, and drug solubilizers. This ISFG exhibited 32.15 kPa of the maximal compressive stress without causing pain and stiffness. The ISFG containing conically milled PPP released PPP in a controlled manner without exhibiting any initial burst release for 4 weeks. The current alginate ISFG injectable using new combination of PLP and GDL could be used to deliver long-acting injectable drugs.


Subject(s)
Alginates/chemistry , Gluconates/chemistry , Hydrogels/chemistry , Lactones/chemistry , Paliperidone Palmitate/administration & dosage , Pyridoxal Phosphate/chemistry , Chemical Phenomena , Delayed-Action Preparations , Humans , Injections , Microscopy, Atomic Force/methods , Paliperidone Palmitate/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL