Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Am Chem Soc ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980064

ABSTRACT

Addressing the global challenge of bacterial resistance demands innovative approaches, among which multitargeting is a widely used strategy. Current strategies of multitargeting, typically achieved through drug combinations or single agents inherently aiming at multiple targets, face challenges such as stringent pharmacokinetic and pharmacodynamic requirements and cytotoxicity concerns. In this report, we propose a bacterial-specific global disruption approach as a vastly expanded multitargeting strategy that effectively disrupts bacterial subcellular organization. This effect is achieved through a pioneering chemical design of ligand-receptor interaction-induced aggregation of small molecules, i.e., DNA-induced aggregation of a diarginine peptidomimetic within bacterial cells. These intracellular aggregates display affinity toward various proteins and thus substantially interfere with essential bacterial functions and rupture bacterial cell membranes in an "inside-out" manner, leading to robust antibacterial activities and suppression of drug resistance. Additionally, biochemical analysis of macromolecule binding affinity, cytoplasmic localization patterns, and bacterial stress responses suggests that this bacterial-specific intracellular aggregation mechanism is fundamentally different from nonselective classic DNA or membrane binding mechanisms. These mechanistic distinctions, along with the peptidomimetic's selective permeation of bacterial membranes, contribute to its favorable biocompatibility and pharmacokinetic properties, enabling its in vivo antimicrobial efficacy in several animal models, including mice-based superficial wound models, subcutaneous abscess models, and septicemia infection models. These results highlight the great promise of ligand-receptor interaction-induced intracellular aggregation in achieving a globally disruptive multitargeting effect, thereby offering potential applications in the treatment of malignant cells, including pathogens, tumor cells, and infected tissues.

2.
Anal Chem ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016332

ABSTRACT

High-throughput screening (HTS) is pivotal in the discovery of small molecules that bind to DNA, yet there are limited sensing mechanisms available for designing HTS assays for DNA binders. Herein, we introduce a binder-responsive toehold-mediated DNA strand displacement (BR-TMSD) technique featuring programmable reaction kinetics in response to DNA-binder interactions. When two DNA binders are used, BR-TMSD is initiated through a rapid binder displacement, followed by the DNA strand displacement. The orthogonal displacement reactions of BR-TMSD enables a high-fidelity, dual-channel HTS assay, returning 19 new DNA binders from a library of 1,170 compounds.

3.
Bioorg Chem ; 144: 107163, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306825

ABSTRACT

The development of effective antibacterial drugs to combat bacterial infections, particularly the biofilm-related infections, remains a challenge. There are two important features of bacterial biofilms, which are well-known critical factors causing biofilms hard-to-treat in clinical, including the dense and impermeable extracellular polymeric substances (EPS) and the metabolically repressed dormant and persistent bacterial population embedded. These characteristics largely increase the difficulty for regular antibiotic treatment due to insufficient penetration into EPS. In addition, the dormant bacteria are insensitive to the growth-inhibiting mechanism of traditional antibiotics. Herein, we explore the potential of a series of new oligopyridinium-based oligomers bearing a multi-biomacromolecule targeting function as the potent bacterial biofilm eradication agent. These oligomers were rationally designed to be "charge-on-backbone" that can offer a special alternating amphiphilicity. This novel and unique feature endows high affinity to bacterial membrane lipids, DNAs as well as proteins. Such a broad multi-targeting nature of molecules not only enables its penetration into EPS, but also plays vital roles in the bactericidal mechanism of action that is highly effective against dormant and persistent bacteria. Our in vitro, ex vivo, and in vivo studies demonstrated that OPc3, one of the most effective derivatives, was able to offer excellent antibacterial potency against a variety of bacteria and effectively eliminate biofilms in zebrafish models and mouse wound biofilm infection models.


Subject(s)
Bacterial Infections , Zebrafish , Animals , Mice , Biofilms , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Bacterial Infections/microbiology
4.
J Am Chem Soc ; 145(42): 23372-23384, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37838963

ABSTRACT

Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Bacteria , Biology , Microbial Sensitivity Tests
5.
Opt Lett ; 48(7): 1846-1849, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37221781

ABSTRACT

In this Letter, we report a bridge-connected three-electrode germanium-on-silicon (Ge-on-Si) avalanche photodiode (APD) array compatible with the complementary metal-oxide semiconductor (CMOS) process. In addition to the two electrodes on the Si substrate, a third electrode is designed for Ge. A single three-electrode APD was tested and analyzed. By applying a positive voltage on the Ge electrode, the dark current of the device can be reduced, and yet the response of the device can be increased. Under a dark current of 100 nA, as the voltage on Ge increases from 0 V to 15 V, the light responsivity is increased from 0.6 A/W to 1.17 A/W. We report, for the first time to the best of our knowledge, the near-infrared imaging properties of an array of three-electrode Ge-on-Si APDs. Experiments show that the device can be used for LiDAR imaging and low-light detection.

6.
Semin Dial ; 36(3): 267-269, 2023.
Article in English | MEDLINE | ID: mdl-36790848

ABSTRACT

J-tip guide wire entrapment within the heart is a serious and dangerous complication that is rarely mentioned. We present a case in which the J-tip guide wire was entrapped in the right atrium during tunneled cuffed venous catheterization. We were unable to remove the guide wire using previously reported methods and concluded with surgery. Owing to the special structure of the guide wire itself, a safe removal process needs to be discussed. Patient consent for publication was obtained prior to the submission of the manuscript.


Subject(s)
Catheterization, Central Venous , Humans , Catheterization, Central Venous/adverse effects , Renal Dialysis , Heart
7.
Sensors (Basel) ; 23(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36904635

ABSTRACT

The angular displacement sensor is a digital angular displacement measurement device that integrates optics, mechanics, and electronics. It has important applications in communication, servo control, aerospace, and other fields. Although conventional angular displacement sensors can achieve extremely high measurement accuracy and resolution, they cannot be integrated because complex signal processing circuitry is required at the photoelectric receiver, which limits their suitability for robotics and automotive applications. The design of a fully integrated line array angular displacement-sensing chip is presented for the first time using a combination of pseudo-random and incremental code channel designs. Based on the charge redistribution principle, a fully differential 12-bit, 1 MSPS sampling rate successive approximation analog-to-digital converter (SAR ADC) is designed for quantization and subdivision of the incremental code channel output signal. The design is verified with a 0.35 µm CMOS process and the area of the overall system is 3.5 × 1.8 mm2. The fully integrated design of the detector array and readout circuit is realized for the angular displacement sensing.

8.
J Am Chem Soc ; 144(23): 10622-10639, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35657057

ABSTRACT

Gram-negative bacteria, especially the ones with multidrug resistance, post dire challenges to antibiotic treatments due to the presence of the outer membrane (OM), which blocks the entry of many antibiotics. Current solutions for such permeability issues, namely lipophilic-cationic derivatization of antibiotics and sensitization with membrane-active agents, cannot effectively potentiate the large, globular, and hydrophilic antibiotics such as vancomycin, due to ineffective disruption of the OM. Here, we present our solution for high-degree OM binding of vancomycin via a hybrid "derivatization-for-sensitization" approach, which features a combination of LPS-targeting lipo-cationic modifications on vancomycin and OM disruption activity from a sensitizing adjuvant. 106- to 107-fold potentiation of vancomycin and 20-fold increase of the sensitizer's effectiveness were achieved with a combination of a vancomycin derivative and its sensitizer. Such potentiation is the result of direct membrane lysis through cooperative membrane binding for the sensitizer-antibiotic complex, which strongly promotes the uptake of vancomycin and adds to the extensive antiresistance effectiveness. The potential of such derivatization-for-sensitization approach was also supported by the combination's potent in vivo antimicrobial efficacy in mouse model studies, and the expanded application of such strategy on other antibiotics and sensitizer structures.


Subject(s)
Gram-Negative Bacteria , Vancomycin , Animals , Anti-Bacterial Agents/pharmacology , Mice , Microbial Sensitivity Tests , Vancomycin/pharmacology
9.
Opt Express ; 30(12): 22221-22232, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-36224925

ABSTRACT

Traditional free-space laser communication systems use beacon and signal lights for target detection and alignment. However, these approaches are inaccurate owing to signal dispersion errors. To overcome this difficulty, we propose a new method using transient radio frequency (RF) signals to achieve highly accurate target detection and alignment. To validate the feasibility of our proposed method, we built an experimental multi-target space-laser communication system based on a rotating double prism and applied it to achieve multi-target space-laser communication. The results demonstrate the efficiency of the proposed method to capture multi-target positions in the field of view using wireless RF signals and a rotating double prism. In addition, we show that the system is capable of rapid scanning and accurate pointing as well as establishing a one-way stable communication with multiple targets. When the target is 36 cm away, the pointing accuracy of the system motor is less than 0.8°, the pointing time is 1.2 s, and the average pointing lateral error is 0.666 mm.

10.
Opt Express ; 30(4): 5008-5018, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209472

ABSTRACT

Silicon based optoelectronic integrated optical phased array is attractive owing to large-dense integration, large scanning range and CMOS compatibility. In this paper, we design and fabricate a SiN-on-SOI two-dimensional optical phased array chip. We demonstrate a two-dimensional scanning range of 96°×14.4° and 690 mW peak power of the main lobe. Additionally, we set up the time of flight (ToF) and frequency-modulated continuous-wave (FMCW) ranging systems by using this optical phased array chip, and achieve the objects detection at the range of 20 m in the ToF system and 109 m in the FMCW system, respectively.

11.
Sensors (Basel) ; 22(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36236444

ABSTRACT

With the development of autonomous driving, augmented reality, and other fields, it is becoming increasingly important for machines to more accurately and comprehensively perceive their surrounding environment. LiDAR is one of the most important tools used by machines to obtain information about the surrounding environment. However, because of occlusion, the point cloud data obtained by LiDAR are not the complete shape of the object, and completing the incomplete point cloud shape is of great significance for further data analysis, such as classification and segmentation. In this study, we examined the completion of a 3D point cloud and improved upon the FoldingNet auto-encoder. Specifically, we used the encoder-decoder architecture to design our point cloud completion network. The encoder part uses the transformer module to enhance point cloud feature extraction, and the decoder part changes the 2D lattice used by the A network into a 3D lattice so that the network can better fit the shape of the 3D point cloud. We conducted experiments on point cloud datasets sampled from the ShapeNet car-category CAD models to verify the effectiveness of the various improvements made to the network.

12.
Sensors (Basel) ; 22(21)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36365813

ABSTRACT

It has become routine to directly process point clouds using a combination of shared multilayer perceptrons and aggregate functions. However, this practice has difficulty capturing the local information of point clouds, leading to information loss. Nevertheless, several recent works have proposed models that establish point-to-point relationships based on this procedure. However, to address the information loss, in this study we use self-supervised methods to enhance the network's understanding of point clouds. Our proposed multigrid autoencoder (MA) constrains the encoder part of the classification network so that it gains an understanding of the point cloud as it reconstructs it. With the help of self-supervised learning, we find the original network improves performance. We validate our model on PointNet++, and the experimental results show that our method improves overall classification accuracy by 2.0% and 4.7% with ModelNet40 and ScanObjectNN datasets, respectively.

13.
Opt Express ; 29(13): 20995-21010, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34266175

ABSTRACT

Two novel waveguide gratings for optical phased array transmitters are investigated. By offsetting the grating structures along the waveguide on the upper and lower surfaces of the silicon nitride (Si3N4) waveguide, the dual-level chain and dual-level fishbone structures can achieve 95% of unidirectional radiation with a single Si3N4 layer by design. With apodized perturbation along the gratings, both structures can achieve uniform radiation without compromising the unidirectional radiation performance. In experiment, both demonstrate ∼ 80-90% unidirectionality. With further analysis, it is found that the dual-level fishbone structure is more feasible and robust to process variations in uniform radiation.

14.
Opt Express ; 29(11): 16346-16361, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154200

ABSTRACT

To address the problem of traditional surface illuminated detectors being of low responsivity, this work proposes a large-size interdigitated "finger-type" germanium-on-silicon (Ge-on-Si) photodetector (PD) based on the surface illumination approach. For 1550 nm light with a surface incident power of -20 dBm at room temperature, the best responsivity of the PD achieved is ∼0.64 A/W at 0.5 V. At the same time, the optimal bandwidth reaches 1.537 MHz with 3.5 V applied voltage. In order to suppress the dark current induced noise, a Ge-on-Si avalanche photodiode (APD) with the interdigitated structure is designed. The avalanche voltage is designed ∼13.3 V at room temperature, and the dark current density in linear region is at mA/cm2 order. We believe this type of device can be applied in weak light detection condition.

15.
Opt Express ; 29(19): 29755-29765, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34614714

ABSTRACT

The optical power handling of an OPA scanning beam determines its targeted detection distance. So far, a limited number of investigations have been conducted on the restriction of the beam power. To the best of our knowledge, we for the first time in this paper explore the ability of the silicon photonics based OPA circuit for the high power application. A 64-channel SiN-Si based one-dimensional (1D) OPA chip has been designed to handle high beam power to achieve large scanning range. The chip was fabricated on the standard silicon photonics platform. The main lobe power of our chip can reach 720 mW and its peak side-lobe level (PSLL) is -10.33 dB. We obtain a wide scanning range of 110° in the horizontal direction at 1550 nm wavelength, with a compressed longitudinal divergence angle of each scanning beam of 0.02°.

16.
Biochem Biophys Res Commun ; 512(3): 517-523, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30904161

ABSTRACT

Invasive aspergillosis (IA) is a life-threatening disease impacting immunocompromised individuals. Standard treatments of IA, including polyenes and azoles, suffer from high toxicity and emerging resistance, leading to the need to develop new antifungal agents with novel mechanisms of action. Ergosterol biosynthesis is a classic target for antifungals, and squalene synthase (SQS) catalyzes the first committed step in ergosterol biosynthesis in Aspergillus spp. making SQS of interest in the context of antifungal development. Here, we cloned, expressed, purified and characterized SQS from the pathogen Aspergillus flavus (AfSQS), confirming that it produced squalene. To identify potential leads targeting AfSQS, we tested known squalene synthase inhibitors, zaragozic acid and the phosphonosulfonate BPH-652, finding that they were potent inhibitors. We then screened a library of 744 compounds from the National Cancer Institute (NCI) Diversity Set V for inhibition activity. 20 hits were identified and IC50 values were determined using dose-response curves. 14 compounds that interfered with the assay were excluded and the remaining 6 compounds were analyzed for drug-likeness, resulting in one compound, celastrol, which had an AfSQS IC50 value of 830 nM. Enzyme inhibition kinetics revealed that celastrol binds to AfSQS in a noncompetitive manner, but did not bind covalently. Since celastrol is also known to inhibit growth of the highly virulent Aspergillus fumigatus by inhibiting flavin-dependent monooxygenase siderophore A (SidA, under iron starvation conditions), it may be a promising multi-target lead for antifungal development.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus flavus/enzymology , Enzyme Inhibitors/pharmacology , Farnesyl-Diphosphate Farnesyltransferase/antagonists & inhibitors , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Aspergillosis/drug therapy , Aspergillosis/microbiology , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cloning, Molecular , Farnesyl-Diphosphate Farnesyltransferase/genetics , Humans , Models, Molecular , Molecular Targeted Therapy , Pentacyclic Triterpenes , Tricarboxylic Acids/pharmacology , Triterpenes/pharmacology
17.
Opt Express ; 26(15): 19154-19170, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30114176

ABSTRACT

We propose a pattern-search-like algorithm to design an aperiodic optical phased array for extensive applications in light detection and ranging and free-space communication. The designed phased array with 128 isotropic elements achieves a scan range, peak side-lobe level, minimum beam width, and mean pitch of ± 82°, -14.34 dB, 0.062°, and 9.75 µm, respectively. To our knowledge, it has the widest steering range, narrowest divergence, and largest mean pitch for the same waveguide number. The minimum pitch can be greater than 2.67λ to avoid cross-coupling. The calculated relationship between the machine error and side-lobe level indicates that the designed structure has a higher error tolerance than its uniformly spaced counterpart.

18.
BMC Surg ; 18(1): 108, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30477462

ABSTRACT

BACKGROUND: Laparoscopic splenectomy (LS) is regarded as a second-line treatment for medically refractory idiopathic thrombocytopenic purpura (ITP), but the predictive factors for the long-term postoperative responses to ITP are still a matter of debate. We aimed to investigate the factors that can predict the long-term response after LS for Chinese patients with medically refractory ITP. METHODS: From January 2011 to September 2016, 78 Chinese patients with ITP who underwent LS were retrospectively analyzed. Twelve parameters were analyzed by univariate and multivariate methods. RESULTS: Univariate analysis revealed that platelet count on preoperative day (PRD) 1 (P < 0.001) and operative time (P = 0.011) were significantly associated with long-term response of ITP after LS. Multivariate analysis revealed that platelet count on PRD 1 was a predictive factor of long-term response (P < 0.001). Furthermore, a long-term, stable response of platelet count on PRD 1 of > 30.0 × 109/L was easier to achieve than a platelet count on PRD 1 ≤ 30.0 × 109/L after LS for ITP. CONCLUSIONS: LS is a valuable and effective option in the treatment of medically refractory ITP. Platelet count on PRD 1 is an independent predicting factor for long-term response after LS for Chinese patients with ITP.


Subject(s)
Platelet Count , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/surgery , Splenectomy/methods , Adolescent , Adult , Aged , Asian People , Female , Humans , Laparoscopy , Male , Middle Aged , Preoperative Period , Prognosis , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Retrospective Studies , Time Factors , Treatment Outcome , Young Adult
19.
Med Sci Monit ; 23: 2333-2339, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28515415

ABSTRACT

BACKGROUND The most appropriate management of Henoch-Schönlein Purpura (HSP) nephritis with nephrotic-range proteinuria remains uncertain. The aim of this study was to evaluate the clinical therapeutic effects of mycophenolate mofetil and low-dose steroid in Henoch-Schönlein purpura nephritis (HSPN) with nephrotic-range proteinuria and pathological classification less than IV in children. MATERIAL AND METHODS The clinical effects of MMF and low-dose steroid therapy were studied in children with Henoch-Schönlein purpura nephritis manifested with nephrotic-range proteinuria, normal kidney function, and <50% crescents or sclerosing lesions on renal biopsy. We enrolled 32 boys and 29 girls with nephrotic-range proteinuria, normal kidney function, and pathological classification less than IV on renal biopsy. We treated 41 cases (67.2%) with mycophenolate mofetil and low-dose prednisone combined therapy and 20 cases (32.8%) were treated with full-dose prednisone alone. RESULTS Short-term response was significantly different between 2 groups (χ²=4.371, P=0.037), while no significant difference was found in long-term prognosis (χ²=0.419, P=0.522) after follow-up. The ROC curve showed that the most appropriate cutoff value was 30.67 µg·h/ml for MPA-AUC and the area under the ROC curve was 0.731, with 85.2% sensitivity and 64.3% specificity. CONCLUSIONS Mycophenolate mofetil and low-dose prednisone combined therapy is a reasonable treatment choice which can promote the remission of proteinuria without increasing obvious adverse reactions in pediatric HSPN with nephrotic state and pathological classification less than grade IV. MPA-AUC more than 30 µg·h/ml was an appropriate value for MMF in the combined therapy with MMF and steroid for treating children with HSPN.


Subject(s)
Mycophenolic Acid/therapeutic use , Nephritis/drug therapy , Biopsy , Child , Child, Preschool , China , Drug Therapy, Combination , Female , Glomerulonephritis/drug therapy , Humans , IgA Vasculitis/drug therapy , Immunosuppressive Agents/therapeutic use , Kidney/pathology , Male , Mycophenolic Acid/metabolism , Nephritis/metabolism , Prednisone/therapeutic use , Proteinuria/pathology , ROC Curve , Retrospective Studies , Steroids/therapeutic use
20.
Appl Opt ; 55(25): 6880-6, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27607262

ABSTRACT

In this paper, we perform a theoretical study of the all-optical logic gates based on the techniques of cross phase modulation (XPM) in a phase-shifted grating. Here the pumps are used to control the switching of a weak continuous wave (cw). In order to understand the transferring process of the information from the pump light to the cw light, we first study the switching characteristic of the device. Then, by changing the combination between two pumps, in a fiber grating with zero phase shift we have realized NOT, AND, and NAND gates, and in a phase-shifted grating with the phase shift π, the other various logic operations can be realized such as NAND gates and OR gates; when selecting Δφ=3/2π, we can realize XOR gates and XNOR gates. Thus the change of the phase shift of the phase-shifted grating will yield various logic gates.

SELECTION OF CITATIONS
SEARCH DETAIL