Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 584(7819): 115-119, 2020 08.
Article in English | MEDLINE | ID: mdl-32454513

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a global health emergency that is in urgent need of intervention1-3. The entry of SARS-CoV-2 into its target cells depends on binding between the receptor-binding domain (RBD) of the viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2)2,4-6. Here we report the isolation and characterization of 206 RBD-specific monoclonal antibodies derived from single B cells from 8 individuals infected with SARS-CoV-2. We identified antibodies that potently neutralize SARS-CoV-2; this activity correlates with competition with ACE2 for binding to RBD. Unexpectedly, the anti-SARS-CoV-2 antibodies and the infected plasma did not cross-react with the RBDs of SARS-CoV or Middle East respiratory syndrome-related coronavirus (MERS-CoV), although there was substantial plasma cross-reactivity to their trimeric spike proteins. Analysis of the crystal structure of RBD-bound antibody revealed that steric hindrance inhibits viral engagement with ACE2, thereby blocking viral entry. These findings suggest that anti-RBD antibodies are largely viral-species-specific inhibitors. The antibodies identified here may be candidates for development of clinical interventions against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Betacoronavirus/chemistry , COVID-19 , Child , Clone Cells/cytology , Clone Cells/immunology , Cross Reactions , Crystallization , Crystallography, X-Ray , Female , Humans , Male , Middle Aged , Models, Molecular , Neutralization Tests , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Plasma/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
2.
Cell Immunol ; 401-402: 104829, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38754338

ABSTRACT

Eosinophils account for a significant portion of immune cells in the body. It is well known that eosinophils play a role in the pathogenesis of many diseases. In which the interaction between eosinophils and other immune cells is incompletely understood. The aim of this study is to characterize the immune suppressive functions of eosinophils. In this study, an irway allergy mouse model was established. Eosinophils were isolated from the airway tissues using flow cytometry cell sorting. The RAW264.7 cell line was used to test the immune suppressive functions of eosinophils. We observed that eosinophils had immune suppressive functions manifesting inhibiting immune cell proliferation and cytokine release from other immune cells. The eosinophil's immune suppressive functions were mediated by eosinophil-derived molecules, such as eosinophil peroxidase (EPX) and major basic protein (MBP). The expression of Ras-like protein in the brain 27a (Rab27a) was detected in eosinophils, which controlled the release of MBP and EPX by eosinophils. Eosinophil mediators had two contrast effects on inducing inflammatory responses or rendering immune suppressive effects, depending on the released amounts. Administration of an inhibitor of Rab27a at proper dosage could alleviate experimental airway allergy. To sum up, eosinophils have immune suppressive functions and are also inflammation inducers. Rab27a governs the release of EPX and MBP from eosinophils, which leads to immune suppression or inflammation. Modulation of Rab27a can alleviate airway allergy responses by modulating eosinophil's immune suppressive functions, which has the translational potential for the management of eosinophil-related diseases.

3.
Phys Chem Chem Phys ; 26(24): 17383-17395, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38860766

ABSTRACT

Although GaN is a promising candidate for semiconductor devices, degradation of GaN-based device performance may occur when the device is bombarded by high-energy charged particles during its application in aerospace, astronomy, and nuclear-related areas. It is thus of great significance to explore the influence of irradiation on the microstructure and electronic properties of GaN and to reveal the internal relationship between the damage mechanisms and physical characteristics. Using a combined density functional theory (DFT) and ab initio molecular dynamics (AIMD) study, we explored the low-energy recoil events in GaN and the effects of point defects on GaN. The threshold displacement energies (Eds) significantly depend on the recoil directions and the primary knock-on atoms. Moreover, the Ed values for nitrogen atoms are smaller than those for gallium atoms, indicating that the displacement of nitrogen dominates under electron irradiation and the created defects are mainly nitrogen vacancies and interstitials. The formation energy of nitrogen vacancies and interstitials is smaller than that for gallium vacancies and interstitials, which is consistent with the AIMD results. Although the created defects improve the elastic compliance of GaN, these radiation damage states deteriorate its ability to resist external compression. Meanwhile, these point defects lead the Debye temperature to decrease and thus increase the thermal expansion coefficients of GaN. As for the electronic properties of defective GaN, the point defects have various effects, i.e., VN (N vacancy), Gaint (Ga interstitial), Nint (N interstitial), and GaN (Ga occupying the N lattice site) defects induce the metallicity, and NGa (N occupying the Ga lattice site) defects decrease the band gap. The presented results provide underlying mechanisms for defect generation in GaN, and advance the fundamental understanding of the radiation resistances of semiconductor materials.

4.
Entropy (Basel) ; 25(10)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37895573

ABSTRACT

Due to the early formation of rolling bearing fault characteristics in an environment with strong background noise, the single use of the time-varying filtering empirical mode decomposition (TVFEMD) method is not effective for the extraction of fault characteristics. To solve this problem, a new method for early fault detection of rolling bearings is proposed, which combines multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) with parameter optimization and TVFEMD. Firstly, a new weighted envelope spectrum kurtosis index is constructed using the correlation coefficient and envelope spectrum kurtosis, which is used to identify the effective component and noise component of the bearing fault signal decomposed by TVFEMD, and the intrinsic mode function (IMF) containing rich fault information is selected for reconstruction. Then, a new synthetic impact index (SII) is constructed by combining the maximum value of the autocorrelation function and the kurtosis of the envelope spectrum. The SII index is used as the fitness function of the gray wolf optimization algorithm to optimize the fault period, T, and the filter length, L, of MOMDEA. The signal reconstructed by TVF-EMD undergoes adaptive filtering using the MOMEDA method after parameter optimization. Finally, an envelope spectrum analysis is performed on the signal filtered by the adaptive MOMEDA method to extract fault feature information. The experimental results of the simulated and measured signals indicate that this method can effectively extract early fault features of rolling bearings and has good reliability. Compared to the classical FSK, MCKD, and TVFEMD-MOMEDA methods, the first-order correlated kurtosis (FCK) and fault feature coefficient (FFC) of the filtered signal obtained using the proposed method are the largest, while the sample entropy (SE) and envelope spectrum entropy (ESE) are the smallest.

5.
Angew Chem Int Ed Engl ; 62(11): e202216878, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36651564

ABSTRACT

Here, we report the first example of Ni-catalyzed asymmetric hydrosilylation of 1,1-disubstituted allenes with high level of regioselectivities and enantioselectivities. The key to achieve this stereoselective hydrosilylation reaction was the development of the SPSiOL-derived bisphosphite ligands (SPSiPO). This protocol features broad substrate scope, excellent functional group, and heterocycle tolerance, thus provides a versatile method for the construction of enantioenriched tertiary allylsilanes in a straightforward and atom-economic manner. DFT calculations were performed to reveal the reaction mechanism and the origins of the enantioselectivity.

6.
J Virol ; 95(7)2021 03 10.
Article in English | MEDLINE | ID: mdl-33472937

ABSTRACT

Human papillomavirus type 58 (HPV58) is associated with cervical cancer and poses a significant health burden worldwide. Although the commercial 9-valent HPV vaccine covers HPV58, the structural and molecular-level neutralization sites of the HPV58 complete virion are not fully understood. Here, we report the high-resolution (∼3.5 Å) structure of the complete HPV58 pseudovirus (PsV58) using cryo-electron microscopy (cryo-EM). Three representative neutralizing monoclonal antibodies (nAbs 5G9, 2H3 and A4B4) were selected through clustering from a nAb panel against HPV58. Bypassing the steric hindrance and symmetry-mismatch in the HPV Fab-capsid immune-complex, we present three different neutralizing epitopes in the PsV58, and show that, despite differences in binding, these nAbs share a common neutralization mechanism. These results offer insight into HPV58 genotype specificity and broaden our understanding of HPV58 neutralization sites for antiviral research.IMPORTANCE Cervical cancer primarily results from persistent infection with high-risk types of human papillomavirus (HPV). HPV type 58 (HPV58) is an important causative agent, especially within Asia. Despite this, we still have limited data pertaining to the structural and neutralizing epitopes of HPV58, and this encumbers our in-depth understanding of the virus mode of infection. Here, we show that representative nAbs (5G9, 10B11, 2H3, 5H2 and A4B4) from three different groups share a common neutralization mechanism that appears to prohibit the virus from associating with the extracellular matrix and cell surface. Furthermore, we identify that the nAbs engage via three different binding patterns: top-center binding (5G9 and 10B11), top-fringe binding (2H3 and 5H2), and fringe binding (A4B4). Our work shows that, despite differences in the pattern in binding, nAbs against HPV58 share a common neutralization mechanism. These results provide new insight into the understanding of HPV58 infection.

7.
J Med Virol ; 94(8): 3992-3997, 2022 08.
Article in English | MEDLINE | ID: mdl-35474319

ABSTRACT

The SARS-CoV-2 vaccines have been widely used to build an immunologic barrier in the population against the COVID-19 pandemic. However, a newly emerging Omicron variant, including BA.1, BA.1.1, BA.2, and BA.3 sublineages, largely escaped the neutralization of existing neutralizing antibodies (nAbs), even those elicited by three doses of vaccines. Here, we used the Omicron BA.1 RBD as a fourth dose of vaccine to induce potent Omicron-specific nAbs and evaluated the broadly neutralizing activities against SARS-CoV-2 variants. The BA.1-based vaccine was indeed prone to induce a strain-specific antibody response substantially cross-reactive with BA.2 sublineage, and yet triggered broad neutralization against SARS-CoV-2 variants when it was used in the sequential immunization with WT and other variant vaccines. These results demonstrated that the booster of Omicron RBD vaccine could be a rational strategy to enhance the broadly nAb response.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
8.
Virol J ; 19(1): 96, 2022 05 28.
Article in English | MEDLINE | ID: mdl-35643510

ABSTRACT

The SARS-CoV-2 nucleocapsid protein (NP) is an important indicator for the virus infection, highlighting the crucial role of NP-specific monoclonal antibodies (mAbs) used in multiple biochemical assays and clinical diagnosis for detecting the NP antigen. Here, we reported a pair of noncompeting human NP-specific mAbs, named P301-F7 and P301-H5, targeting two distinct linear epitopes on SARS-CoV-2 or SARS-CoV. We evaluated the application of P301-F7 in the analysis of enzyme linked immunosorbent assay, western blot, flow cytometry, immunofluorescence, and focus reduction neutralization test. We for the first time report a broad mAb effectively recognizing various live viruses of SARS-CoV-2 variants including Alpha, Beta, Delta, and Omicron, indicating a wide range of application prospects.


Subject(s)
COVID-19 , Nucleocapsid Proteins , Animals , Antibodies, Monoclonal , COVID-19/diagnosis , Humans , Mice , Mice, Inbred BALB C , Nucleocapsid Proteins/genetics , SARS-CoV-2/genetics
9.
Virol J ; 19(1): 2, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34983583

ABSTRACT

The current COVID-19 pandemic caused by constantly emerging SARS-CoV-2 variants still poses a threat to public health worldwide. Effective next-generation vaccines and optimized booster vaccination strategies are urgently needed. Here, we sequentially immunized mice with a SARS-CoV-2 wild-type inactivated vaccine and a heterologous mutant RBD vaccine, and then evaluated their neutralizing antibody responses against variants including Beta, Delta, Alpha, Iota, Kappa, and A.23.1. These data showed that a third booster dose of heterologous RBD vaccine especially after two doses of inactivated vaccines significantly enhanced the GMTs of nAbs against all SARS-CoV-2 variants we tested. In addition, the WT and variants all displayed good cross-immunogenicity and might be applied in the design of booster vaccines to induce broadly neutralizing antibodies.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Mice , SARS-CoV-2/immunology
10.
Proc Natl Acad Sci U S A ; 116(52): 26933-26940, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31818956

ABSTRACT

In adaptive immunity, organisms produce neutralizing antibodies (nAbs) to eliminate invading pathogens. Here, we explored whether viral neutralization could be attained through the physical disruption of a virus upon nAb binding. We report the neutralization mechanism of a potent nAb 8C11 against the hepatitis E virus (HEV), a nonenveloped positive-sense single-stranded RNA virus associated with abundant acute hepatitis. The 8C11 binding flanks the protrusion spike of the HEV viruslike particles (VLPs) and leads to tremendous physical collision between the antibody and the capsid, dissociating the VLPs into homodimer species within 2 h. Cryo-electron microscopy reconstruction of the dissociation intermediates at an earlier (15-min) stage revealed smeared protrusion spikes and a loss of icosahedral symmetry with the capsid core remaining unchanged. This structural disruption leads to the presence of only a few native HEV virions in the ultracentrifugation pellet and exposes the viral genome. Conceptually, we propose a strategy to raise collision-inducing nAbs against single spike moieties that feature in the context of the entire pathogen at positions where the neighboring space cannot afford to accommodate an antibody. This rationale may facilitate unique vaccine development and antimicrobial antibody design.

11.
Magn Reson Med ; 85(3): 1669-1680, 2021 03.
Article in English | MEDLINE | ID: mdl-32970911

ABSTRACT

PURPOSE: This paper studies the RF-induced heating for modular external fixation devices applied on the leg regions of the human bodies. Through numerical investigations of RF-induced heating related to different patient orientations, landmark positions, and device positions under 1.5T and 3T MRI systems, simple and practical methods to reduce RF-induced heating are recommended. METHODS: Numerical simulations using a full-wave electromagnetic solver based on the finite-difference time-domain method were performed to characterize the effects of patient orientations (head-first/feet-first), landmark positions (the scanning area of the patient), and device positions (device on left or right leg) on the RF-induced heating of the external fixation devices. The G32 coil design and three anatomical human models (Duke model, Ella model, and Fats model) were adopted to model the MRI RF coil and the patients. RESULTS: The relative positions of the patient, device, and coil can significantly affect the RF-induced heating. With other conditions remaining the same, changing the device position or patient orientation can lead to a peak 1-g averaged spatial absorption ratio variation of a factor around four. By changing the landmark position and the patient orientation, the RF-induced heating can be reduced from 1323.6 W/kg to 217.5 W/kg for the specific scanning situations studied. CONCLUSION: Patient orientations, landmark positions, and device positions influence the RF-induced heating of modular external fixation devices at 1.5 T and 3 T. These features can be used to reduce the RF-induced heating during MRI simply and practically.


Subject(s)
External Fixators , Heating , Fracture Fixation , Hot Temperature , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Radio Waves
12.
Virol J ; 18(1): 87, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33910569

ABSTRACT

The emergence and rapid spread of the B.1.1.7 lineage (VOC-202012/01) SARS-CoV-2 variant has aroused global concern. The N501Y substitution is the only mutation in the interface between the RBD of B.1.1.7 and ACE2, raising concerns that its recognition by neutralizing antibodies may be affected. Here, we assessed the neutralizing activity and binding affinity of a panel of 12 monoclonal antibodies against the wild type and N501Y mutant SARS-CoV-2 pseudovirus and RBD protein, respectively. We found that the neutralization activity and binding affinity of most detected antibodies (10 out of 12) were unaffected, although the N501Y substitution decreased the neutralizing and binding activities of CB6 and increased that of BD-23. These findings could be of value in the development of therapeutic antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibody Affinity , Binding Sites , Epitopes/immunology , HEK293 Cells , Humans , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
13.
Int J Med Sci ; 18(3): 646-651, 2021.
Article in English | MEDLINE | ID: mdl-33437199

ABSTRACT

Objectives: A significant proportion of discharged COVID-19 patients still have some symptoms. Traditional Chinese medicine (TCM) has played an important role in the treatment of COVID-19, but whether it is helpful for discharged patients is still unknown. The aim of this study was to retrospectively analyze the impacts of TCM treatment on the convalescents of COVID-19. Methods: A total of 372 COVID-19 convalescents from February 21 to May 3 in Shenzhen, China were retrospectively analyzed, 291 of them accepted clinically examined at least once and 191 convalescents accepted TCM. Results: After retrospective analysis of the clinical data of convalescents accepted TCM treatment or not, we found that the white blood cell count, as well as serum interleukin-6 and procalcitonin decreased in TCM group. Serum γ-glutamyl transpeptidase was significantly decreased, while prealbumin and albumin increased in TCM group. Red blood cell, hemoglobin, and platelet count increased in TCM group. The mechanisms of TCM treatment might be the overall regulations, including balanced immune response, improved hematopoiesis and coagulation systems, enhanced functions of liver and heart, increased nutrient intake and lipid metabolism. Conclusions: This study suggested that TCM treatment would be beneficial for discharged COVID-19 patients. However, long-term medical observation and further study with randomized trial should be done to confirm this result. Besides, the potential molecular mechanisms of TCM treatment should be further revealed.


Subject(s)
COVID-19/rehabilitation , Convalescence , Drugs, Chinese Herbal/administration & dosage , COVID-19/blood , COVID-19/diagnosis , Hospitals, Isolation/statistics & numerical data , Humans , Retrospective Studies , SARS-CoV-2/isolation & purification , Treatment Outcome
14.
Int J Med Sci ; 18(1): 176-186, 2021.
Article in English | MEDLINE | ID: mdl-33390786

ABSTRACT

Objective: The aim of this study was to observe the liver function recovery of COVID-19 patients after discharge. Patients and Methods: A total of 253 discharged COVID-19 patients in Shenzhen city, China were selected. The clinical characteristics of these patients were assessed. A 2-month follow-up and laboratory hematology test were performed to examine the status of patients' liver function. Results: Patients combined with liver diseases, especially fatty liver, are more likely to progress to severe condition (P<0.05). Patients in severe condition and those with liver diseases have higher rates of liver injuries during hospitalization, characterized by a significant increase in alanine aminotransferase (ALT) and aspartate aminotransferase (AST, P<0.01). The ALT, AST/ALT, gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), total protein (TP), albumin (ALB), and A/G levels showed significant differences in comparison with the control group (P<0.05, and P<0.001); and the outlier ratio of A/G, ALT, GGT and ALP of patients remained abnormal higher within 14 days after discharge (P<0.001). Liver injuries of COVID-19 patients may be related to the epidemiological characteristics, clinical indexes, basic diseases, symptoms, drug treatment during hospitalization and the complications. Indicators of liver function were correlated with cardiac function, renal function, thyroid function, lipid metabolism, glucose metabolism, immune index, leukocyte, erythrocyte, hemoglobin and platelet related indexes. The outlier ratio of TP, ALB and GLB remained extremely low throughout the follow-up period; the outlier ratio of ALT, AST and GGT decreased below 10% from a high level at 40 days after discharged. However, the outlier ratio of A/G, AST/ALT and ALP remained high during the follow-up period. Conclusions: Abnormal liver function might indicate worse recovery of COVID-19 patients. Changes in liver function should be emphasized during long-term follow-up of COVID-19 patients after hospital discharge; the necessity of employing appropriate interventions for liver function repair should be emphasized.


Subject(s)
COVID-19/complications , Hepatic Insufficiency/virology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/physiopathology , Child , Child, Preschool , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Infant , Liver Function Tests , Male , Middle Aged , Recovery of Function , Young Adult
15.
Int J Med Sci ; 18(2): 347-355, 2021.
Article in English | MEDLINE | ID: mdl-33390803

ABSTRACT

Objectives: Research on recovering COVID-19 patients could be helpful for containing the pandemic and developing vaccines, but we still do not know much about the clinical features, recovery process, and antibody reactions during the recovery period. Methods: We retrospectively analysed the epidemiological information, discharge summaries, and laboratory results of 324 patients. Results: In all, 15 (8.62%) patients experienced chest distress/breath shortness, where 8 of the 15 were severely ill. This means severely ill patients need an extended amount of time to recover after discharge; next, 20 (11.49%) patients experienced anxiety and 21 (12.07%) had headache/insomnia and a small fraction of them complained of anosmia/ageusia, indicating that these patients need treatment for mental and psychological health issues. Regarding the re-positive patients, their CT and laboratory test results showed no obvious evidence of illness progress or infectivity but a high anti-SARS-CoV-2 antibody expression. Conclusion: Recovered COVID-19 patients need psychological and physiological care and treatment, re-positivity can occur in any person, but juveniles, females, and patients with mild/moderate existing symptoms have higher rates of re-positivity, While there is no evidence that turning re-positive has an impact on their infectivity, but it still alerted us that we need differentiate them in the following managements.


Subject(s)
COVID-19/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Ageusia , Anosmia , COVID-19/psychology , COVID-19/rehabilitation , COVID-19/virology , Child , Child, Preschool , China/epidemiology , Female , Follow-Up Studies , Humans , Infant , Male , Middle Aged , Recurrence , Retrospective Studies , SARS-CoV-2/isolation & purification , Young Adult
16.
Clin Lab ; 67(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33616334

ABSTRACT

BACKGROUND: COVID-19 has recently been declared an epidemic by the WHO, and there is an urgent need for affected countries and laboratories to assess and treat people at risk of COVID-19. A heat procedure has been suggested for specimen inactivation. This study was designed to evaluate the effect of serum heating on biochemical indexes, and providing a basis for accurate detection results of the COVID-19 patients. METHODS: We collected 29 normal cases of two tubes of 5 mL whole blood. One tube was analyzed directly, and the other was analyzed after heating at 56°C 30 minutes. RESULTS: A total of 34 serum biochemical index quantitative results were obtained, 28/34 indexes were not significantly affected by the heat inactivation and remained clinically interpretable. As the thermal inactivation for these indexes showed good correlation, ALB (p = 0.04, Pearson R = 0.91, 2.6% mean increase), CysC (p = 0.03, Pearson R = 0.98, 9.9% mean increase), CO2CP (p < 0.001, Pearson R = 0.96, 13% mean decrease), they were still inter-pretable. Four biochemical indexes ALP, CK, CK-MB, and insulin were inactivated and showed significant statistical differences (p < 0.001). CONCLUSIONS: Our study showed CK, CK-MB, ALP, and insulin were sensitive to heat and will be inhibited or degrade after heating, indicating that the rapid decrease of this indexes in the COVID-19 patients may be caused by sample heat inactivation. For safety and diagnostic accuracy, we recommend the use of a point-of-care device for blood gases, electrolytes, troponin, and liver and renal function tests within a ISL 2 or above biosafety cabinet with level 3 or above biosafety laboratory practice.


Subject(s)
Blood Chemical Analysis , COVID-19 , Diagnostic Errors/prevention & control , Hot Temperature/adverse effects , SARS-CoV-2 , Virus Inactivation , Alkaline Phosphatase/blood , Blood Chemical Analysis/methods , Blood Chemical Analysis/standards , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Creatine Kinase/blood , Female , Humans , Insulin/blood , Male , Middle Aged , Point-of-Care Systems , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Sensitivity and Specificity
17.
FASEB J ; 33(4): 4883-4892, 2019 04.
Article in English | MEDLINE | ID: mdl-30592645

ABSTRACT

Clostridium difficile is associated with antibiotic-associated diarrhea and pseudomembranous colitis in humans. Its 2 major toxins, toxins A and B, enter host cells and inactivate GTPases of the Ras homologue/rat sarcoma family by glucosylation. Pore formation of the toxins in the endosomal membrane enables the translocation of their glucosyltransferase domain into the cytosol, and membrane cholesterol is crucial for this process. Here, we asked whether the activity of the sterol regulatory element-binding protein 2 (SREBP-2) pathway, which regulates the cholesterol content in membranes, affects the susceptibility of target cells toward toxins A and B. We show that the SREBP-2 pathway is crucial for the intoxication process of toxins A and B by using pharmacological inhibitors (PF-429242, 25-hydroxycholesterol) and cells that are specifically deficient in SREBP-2 pathway signaling. SREBP-2 pathway inhibition disturbed the cholesterol-dependent pore formation of toxin B in cellular membranes. Preincubation with the cholesterol-lowering drug simvastatin protected cells from toxin B intoxication. Inhibition of the SREBP-2 pathway was without effect when the enzyme portion of toxin B was introduced into target cells via the cell delivery property of anthrax protective antigen. Taken together, these findings allowed us to identify the SREBP-2 pathway as a suitable target for the development of antitoxin therapeutics against C. difficile toxins A and B.-Papatheodorou, P., Song, S., López-Ureña, D., Witte, A., Marques, F., Ost, G. S., Schorch, B., Chaves-Olarte, E., Aktories, K. Cytotoxicity of Clostridium difficile toxins A and B requires an active and functional SREBP-2 pathway.


Subject(s)
Bacterial Proteins/pharmacology , Bacterial Toxins/pharmacology , Enterotoxins/pharmacology , Sterol Regulatory Element Binding Protein 2/metabolism , Animals , CHO Cells , Cell Line , Cricetulus , HeLa Cells , Humans , Hydroxycholesterols/pharmacology , Mice , Pyrrolidines/pharmacology , Signal Transduction/drug effects
18.
Brain Behav Immun ; 88: 39-43, 2020 08.
Article in English | MEDLINE | ID: mdl-32464158

ABSTRACT

Self-reported depression has been observed in coronavirus disease-2019 (COVID-19) patients, infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), during discharge from the hospital. However, the cause of this self-reported depression during the convalescent period remains unclear. Here, we report the mental health status of 96 convalescent COVID-19 patients who were surveyed using an online questionnaire at the Shenzhen Samii Medical Center from March 2 to March 12, 2020 in Shenzhen, China. After obtaining their informed consent, we retrospectively analyzed the clinical characteristics of patients, including routine blood and biochemical data. The results suggested that patients with self-reported depression exhibited increased immune response, as indicated by increased white blood cell and neutrophil counts, as well as neutrophil-to-lymphocyte ratio. However, the mechanism linking self-reported depression to these cellular changes needs further study. In conclusion, self-reported depression occurred at an early stage in convalescent COVID-19 patients, and changes in immune function were apparent during short-term follow-up of these patients after discharge. Appropriate psychological interventions are necessary, and changes in immune function should be emphasized during long-term follow up of these patients.


Subject(s)
Convalescence/psychology , Coronavirus Infections/psychology , Depression/psychology , Depressive Disorder/psychology , Pneumonia, Viral/psychology , Adult , Basophils , Betacoronavirus , C-Reactive Protein/immunology , COVID-19 , China , Coronavirus Infections/immunology , Depression/immunology , Depressive Disorder/immunology , Eosinophils , Female , Humans , Interleukin-6/immunology , Length of Stay , Leukocyte Count , Lymphocyte Count , Male , Middle Aged , Monocytes , Neutrophils , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2 , Self Report , Severity of Illness Index , Young Adult
19.
Med Sci Monit ; 26: e920520, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32188838

ABSTRACT

BACKGROUND Freshly isolated mouse embryonic fibroblasts (MEFs) have great proliferation capacity but quickly enter senescent state after several rounds of cell cycle, a process called premature senescence. Cellular senescence can be induced by various stresses such as telomere erosion, DNA damage, and oncogenic signaling. But the contribution of other molecules, such as growth factors, to cellular senescence is incompletely understood. This study aimed to compare the gene expression difference between non-senescent and senescent MEFs to identify the key molecule(s) involved in the spontaneous senescence of MEFs. MATERIAL AND METHODS Primary MEFs were isolated from E12.5 pregnant C57/BL6 mice. The cells were continuously cultured in Dulbecco's Modified Eagle Medium for 9 passages. SA-ß-Gal staining was used as an indicator of cell senescence. The supernatant from primary MEFs (P1 medium) or Passage 6 MEFs (P6 medium) were used to culture freshly isolated MEFs to observe the effects on cell senescence state. Gene expression profiles of primary and senescent MEFs were investigated by RNA-Seq to find the key genes involved in cell senescence. Adipocyte differentiation assay was used to evaluate the stemness of MEFs cultured in FGF2-stimulated medium. RESULTS The senescence of MEFs cultured in the P1 medium was alleviated when compared to the P6 medium. Downregulation of FGF2 expression was revealed by RNA-Seq and further confirmed by real-time quantitative polymerase chain reaction and western blot. FGF2-stimulated medium also had anti-senescence function and could maintain the differentiation ability of MEFs. CONCLUSIONS The premature senescence of MEFs was at least partially caused by FGF2 deficiency. Exogenous FGF2 could alleviate the senescent phenotype.


Subject(s)
Cellular Senescence/physiology , Fibroblast Growth Factor 2/metabolism , Fibroblasts/metabolism , Animals , Cell Differentiation , Cell Proliferation , DNA Damage , Embryo, Mammalian/metabolism , Female , Gene Expression Profiling , Mice , Mice, Inbred C57BL , Pregnancy , Real-Time Polymerase Chain Reaction , Signal Transduction
20.
Int J Syst Evol Microbiol ; 69(3): 816-820, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30694172

ABSTRACT

A Gram-stain-negative, rod-shaped (0.2-0.4 µm×1.2-1.7 µm), endophytic bacterium, designated HBUM179779T, was isolated from the stem of a medicinal plant,Gynura bicolor, collected from Pixian county in Sichuan province, China. The strain did not produce endospores and its cells could secrete mucus. The predominant menaquinone was MK-7. The polar lipids were phosphatidylethanolamine, phosphatidylinositolmannosides, two unknown aminolipids, two unknown glycolipids and an unknown phospholipid. Branched fatty acids (iso-) and hydroxy fatty acids were the main fatty acids, which mainly included iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HBUM179779T fell within the family Chitinophagaceae, and its closest neighbour was Pseudoflavitalea rhizosphaerae T16R-265T (94.46 %). However, strain HBUM179779T did not make a coherent clade with members of the recognized organisms. The average nucleotide identity value between strain HBUM179779T and Pseudoflavitalea rhizosphaerae T16R-265T was 67.1 %. On the basis of the phylogenetic and phenotypic characteristics of this bacterium, a novel genus and species, Gynurincola endophyticus gen. nov., sp. nov., is proposed. The type strain is HBUM179779T (=CGMCC 1.15525T=NBRC 112424T).


Subject(s)
Asteraceae/microbiology , Bacteroidetes/classification , Phylogeny , Plant Stems/microbiology , Bacterial Typing Techniques , Bacteroidetes/isolation & purification , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , Plants, Medicinal/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL