Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Mol Cell ; 82(9): 1660-1677.e10, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35320754

ABSTRACT

Tumor-infiltrating myeloid cells (TIMs) are crucial cell populations involved in tumor immune escape, and their functions are regulated by multiple epigenetic mechanisms. The precise regulation mode of RNA N6-methyladenosine (m6A) modification in controlling TIM function is still poorly understood. Our study revealed that the increased expression of methyltransferase-like 3 (METTL3) in TIMs was correlated with the poor prognosis of colon cancer patients, and myeloid deficiency of METTL3 attenuated tumor growth in mice. METTL3 mediated m6A modification on Jak1 mRNA in TIMs, the m6A-YTHDF1 axis enhanced JAK1 protein translation efficiency and subsequent phosphorylation of STAT3. Lactate accumulated in tumor microenvironment potently induced METTL3 upregulation in TIMs via H3K18 lactylation. Interestingly, we identified two lactylation modification sites in the zinc-finger domain of METTL3, which was essential for METTL3 to capture target RNA. Our results emphasize the importance of lactylation-driven METTL3-mediated RNA m6A modification for promoting the immunosuppressive capacity of TIMs.


Subject(s)
Methyltransferases , Neoplasms , Adenosine/metabolism , Animals , Humans , Immunosuppression Therapy , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Myeloid Cells/metabolism , RNA , Tumor Microenvironment
2.
J Immunol ; 211(11): 1701-1713, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37843504

ABSTRACT

Dendritic cells (DCs), a driver of psoriasis pathogenesis, produce IL-23 and trigger IL-23/IL-17 cytokine axis activation. However, the mechanisms regulating IL-23 induction remain unclear. In the current study, we found that mice with E3 ligase FBXW7 deficiency in DCs show reduced skin inflammation correlated with the reduction of IL-23/IL-17 axis cytokines in the imiquimod-induced psoriasis model. Fbxw7 deficiency results in decreased production of IL-23 in DCs. FBXW7 interacts with the lysine N-methyltransferase suppressor of variegation 39 homolog 2 (SUV39H2), which catalyzes the trimethylation of histone H3 Lys9 (H3K9) during transcription regulation. FBXW7 mediates the ubiquitination and degradation of SUV39H2, thus decreasing H3K9m3 deposition on the Il23a promoter. The Suv39h2 knockout mice displayed exacerbated skin inflammation with the IL-23/IL-17 axis overactivating in the psoriasis model. Taken together, our results indicate that FBXW7 increases IL-23 expression in DCs by degrading SUV39H2, thereby aggravating psoriasis-like inflammation. Inhibition of FBXW7 or the FBXW7/SUV39H2/IL-23 axis may represent a novel therapeutic approach to psoriasis.


Subject(s)
Dermatitis , Psoriasis , Animals , Mice , Dendritic Cells/metabolism , Dermatitis/pathology , Disease Models, Animal , Epigenesis, Genetic , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Inflammation/metabolism , Interleukin-17/metabolism , Interleukin-23/metabolism , Psoriasis/pathology , Skin/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Exp Dermatol ; 32(9): 1439-1450, 2023 09.
Article in English | MEDLINE | ID: mdl-37293825

ABSTRACT

Bowenoid papulosis (BP) is a benign and possibly carcinogenic disease associated with human papillomavirus (HPV) infection, which has been increasingly recognised and paid attention to in recent years, but the potential mechanisms still remain unclear. In our study, three patients who were diagnosed with BP were enrolled into our research. Skin biopsies were taken and were separated into two parts, one part was for HE staining and the others were for RNA-sequencing (RNA-seq). All the three patents were human papillomavirus (HPV) positive and HE staining revealed typical skin histopathological changes in BP, including dyskeratosis, hyperplasia and hypertrophy of the granular and spinous layers, atypical keratinocytes. RNA-seq analysis demonstrated that a total of 486 differentially expressed genes (DEGs) were detected between the skin tissues from BP and the controls, among which, 320 genes were significantly upregulated and 166 genes were dramatically downregulated. GO enrichment revealed that antigen binding, cell cycle, immune response and keratinisation to be the most notably altered pathways, whereas KEGG analysis indicated that cell cycle cytokine-cytokine receptor interaction, ECM receptor interaction and p53 signalling pathway to be the most significantly changed signalling pathways in BP. Furthermore, metabolism-associated enrichment analysis showed that cholesterol metabolism, metabolism of xenobiotics by cytochrome p450 and pyrimidine metabolism to be the most dramatically dysregulated metabolic pathways in BP as compared to normal controls. Our study revealed that inflammation, metabolism and cell proliferation signalling pathways might be the most important pathways for BP disease, targeted inhibiting of these signals might be a potential method for BP treatment.


Subject(s)
Bowen's Disease , Carcinoma, Squamous Cell , Condylomata Acuminata , Papillomavirus Infections , Precancerous Conditions , Humans , Papillomavirus Infections/genetics , Papillomavirus Infections/complications , Transcriptome , Bowen's Disease/genetics , Bowen's Disease/diagnosis , Bowen's Disease/pathology
4.
EMBO Rep ; 22(5): e52063, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33769697

ABSTRACT

Psoriasis is mainly characterized by abnormal hyperplasia of keratinocytes and immune cells infiltrating into the dermis and epidermis. Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) is a highly conserved HECT type E3 ligase that plays an important role in regulating physiological and pathological processes. Here, we identify NEDD4L as a negative regulator of psoriasis. Nedd4l significantly inhibits imiquimod (IMQ)-induced skin hyperplasia, and this effect is attributed to the inhibitory effect of NEDD4L on IL-6/GP130 signaling in keratinocytes. Mechanistically, NEDD4L directly interacts with GP130 and mediates its Lys-27-linked ubiquitination and proteasomal degradation. Moreover, the expression of NEDD4L is downregulated in the epidermis from IMQ-treated mice and psoriasis patients and negatively correlates with the protein levels of GP130 and p-STAT3 in clinical samples. Collectively, we uncover an inhibitory role of NEDD4L in the pathogenesis of psoriasis and suggest a new therapeutic strategy for the treatment of psoriasis.


Subject(s)
Psoriasis , Ubiquitin-Protein Ligases , Animals , Cytokine Receptor gp130 , Humans , Hyperplasia/pathology , Keratinocytes , Mice , Nedd4 Ubiquitin Protein Ligases/genetics , Psoriasis/genetics , Ubiquitin-Protein Ligases/genetics
5.
J Virol ; 93(12)2019 06 15.
Article in English | MEDLINE | ID: mdl-30971468

ABSTRACT

Low-risk human papillomaviruses (LR-HPVs) are the causative agents of genital warts, which are a widespread sexually transmitted disease. How LR-HPVs affect autophagy and the specific proteins involved are unknown. In the current study, we investigated the impact of LR-HPV11 early protein 6 (E6) on the activity of the autophagy pathway. We transfected an HPV11 E6 (11E6) plasmid into HaCaT cells, H8 cells, and NHEK cells and established a stable cell line expressing the HPV11 E6 protein. The differences in autophagy activity and upstream regulatory pathways compared with those in the parent cell lines were investigated using a Western blot analysis of the total and phosphorylated protein levels and confocal microscopy of immunostained cells and cells transfected with an mCherry-green fluorescent protein-LC3 expression plasmid. We used short hairpin RNA (shRNA) to knock down 11E6 and showed that these effects require continued 11E6 expression. Compared with its expression in the control cells, the expression of HPV11 E6 in the cells activated the autophagy pathway. The increased autophagy activity was the result of the decreased phosphorylation levels of the canonical autophagy repressor mammalian target of rapamycin (mTOR) at its Ser2448 position (the mTOR complex 1 [mTORC1] phosphorylation site) and decreased AKT and Erk phosphorylation. Therefore, these results indicate that HPV11 E6 activates autophagy through the AKT/mTOR and Erk/mTOR pathways. Our findings provide novel insight into the relationship between LR-HPV infections and autophagy and could help elucidate the pathogenic mechanisms of LR-HPV.IMPORTANCE We transfected an HPV11 E6 plasmid into HaCaT cells, H8 cells, and NHEK cells and established a stable cell line expressing the HPV11 E6 protein. Then, we confirmed that HPV11 E6 induces autophagy by suppressing the AKT/mTOR and Erk/mTOR pathways. In contrast to the high-risk HPV E6 genes, HPV11 E6 did not affect the expression of p53. To the best of our knowledge, this study represents the first direct in-depth investigation of the relationship between the LR-HPV E6 gene and autophagy, which may help to reveal the pathogenesis of LR-HPV infection.


Subject(s)
Autophagy/physiology , Human papillomavirus 11/metabolism , Oncogene Proteins, Viral/metabolism , Cell Line , Human papillomavirus 11/genetics , Humans , MAP Kinase Signaling System/physiology , Oncogene Proteins, Viral/physiology , Papillomavirus Infections/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
6.
Microbiol Immunol ; 62(9): 585-593, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30160073

ABSTRACT

MicroRNAs are short, non-coding RNAs that have been shown to regulate a wide range of biological processes, including host antiviral immune responses. In the present study, microRNA-92a (miR-92a) was identified as a negative regulator in macrophage-mediated antiviral responses. Overexpression of miR-92a decreases vesicular stomatitis virus (VSV)-induced production of type-I IFNs and facilitates viral replication in macrophages. The mechanism is that miR-92a directly targets RIG-I and reduces its expression, thereby attenuating VSV-triggered activation of TBK-binding kinase 1 and IRF3, both of which are crucial for initiating transcription of type-I IFN genes. Our results demonstrate for the first time the novel role of miR-92a in suppressing antiviral innate immunity.


Subject(s)
DEAD Box Protein 58/drug effects , Immunity, Innate/drug effects , Macrophages/drug effects , MicroRNAs/antagonists & inhibitors , Vesicular Stomatitis/immunology , Vesicular stomatitis Indiana virus/immunology , Animals , Antiviral Agents/metabolism , Cytokines/metabolism , DEAD Box Protein 58/metabolism , Down-Regulation , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Immunity, Innate/immunology , Interferon Regulatory Factor-3/immunology , Interferon Type I/genetics , Interferon Type I/metabolism , Macrophages/immunology , Macrophages/virology , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Protein Serine-Threonine Kinases/metabolism , RAW 264.7 Cells/drug effects , Receptors, Immunologic , Sequence Alignment , Up-Regulation/drug effects , Virus Replication/drug effects
7.
J Biol Chem ; 291(28): 14706-16, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27226534

ABSTRACT

Effective recognition of viral infection and subsequent triggering of antiviral innate immune responses are essential for the host antiviral defense, which is tightly regulated by multiple regulators, including microRNAs. Previous reports have shown that some microRNAs are induced during virus infection and participate in the regulation of the innate antiviral response. However, whether the type I IFN response is regulated by miR-223 is still unknown. Here, we reported that vesicular stomatitis virus (VSV) infection induced significant up-regulation of miR-223 in murine macrophages. We observed that miR-223 overexpression up-regulated type I IFN expression levels in VSV-infected macrophages. We also demonstrated that miR-223 directly targets FOXO3 to regulate the type I IFN production. Furthermore, type I IFN, which is triggered by VSV infection, is responsible for the up-regulation of miR-223, thus forming a positive regulatory loop for type I IFN production. Our results uncovered a novel mechanism of miR-223-mediated regulation of type I IFN production in the antiviral innate immunity for the first time.


Subject(s)
Forkhead Box Protein O3/immunology , Interferon Type I/immunology , Macrophages/virology , MicroRNAs/immunology , Vesicular Stomatitis/immunology , Vesiculovirus/immunology , Animals , Cell Line , HEK293 Cells , Humans , Immunity, Innate , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Vesicular Stomatitis/genetics , Vesiculovirus/physiology , Virus Replication
8.
J Biol Chem ; 288(11): 7956-7967, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23355465

ABSTRACT

Toll-like receptors (TLRs) play a critical role in the initiation of immune responses against invading pathogens. MicroRNAs have been shown to be important regulators of TLR signaling. In this study, we have found that the stimulation of multiple TLRs rapidly reduced the levels of microRNA-92a (miRNA-92a) and some other members of the miRNA-92a family in macrophages. miR-92a mimics significantly decreased, whereas miR-92a knockdown increased, the activation of the JNK/c-Jun pathway and the production of inflammatory cytokines in macrophages when stimulated with ligands for TLR4. Furthermore, mitogen-activated protein kinase kinase 4 (MKK4), a kinase that activates JNK/stress-activated protein kinase, was found to be directly targeted by miR-92a. Similar to the effects of the miR-92a mimics, knockdown of MKK4 inhibited the activation of JNK/c-Jun signaling and the production of TNF-α and IL-6. In conclusion, we have demonstrated that TLR-mediated miR-92a reduction feedback enhances TLR-triggered production of inflammatory cytokines in macrophages, thus outlining new mechanisms for fine-tuning the TLR-triggered inflammatory response.


Subject(s)
Gene Expression Regulation, Enzymologic , Inflammation/metabolism , MAP Kinase Kinase 4/metabolism , Macrophages/metabolism , MicroRNAs/physiology , Toll-Like Receptor 4/metabolism , 3' Untranslated Regions , Animals , Humans , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Small Interfering/metabolism , Signal Transduction
9.
J Immunol ; 188(11): 5500-10, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22544933

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) potently suppress the anti-tumor immune responses and also orchestrate the tumor microenvironment that favors tumor angiogenesis and metastasis. The molecular networks regulating the accumulation and functions of tumor-expanded MDSCs are largely unknown. In this study, we identified microRNA-494 (miR-494), whose expression was dramatically induced by tumor-derived factors, as an essential player in regulating the accumulation and activity of MDSCs by targeting of phosphatase and tensin homolog (PTEN) and activation of the Akt pathway. TGF-ß1 was found to be the main tumor-derived factor responsible for the upregulation of miR-494 in MDSCs. Expression of miR-494 not only enhanced CXCR4-mediated MDSC chemotaxis but also altered the intrinsic apoptotic/survival signal by targeting of PTEN, thus contributing to the accumulation of MDSCs in tumor tissues. Consequently, downregulation of PTEN resulted in increased activity of the Akt pathway and the subsequent upregulation of MMPs for facilitation of tumor cell invasion and metastasis. Knockdown of miR-494 significantly reversed the activity of MDSCs and inhibited the tumor growth and metastasis of 4T1 murine breast cancer in vivo. Collectively, our findings reveal that TGF-ß1-induced miR-494 expression in MDSCs plays a critical role in the molecular events governing the accumulation and functions of tumor-expanded MDSCs and might be identified as a potential target in cancer therapy.


Subject(s)
Cell Aggregation/immunology , MicroRNAs/physiology , Myeloid Cells/immunology , Myeloid Cells/pathology , PTEN Phosphohydrolase/metabolism , Animals , Carcinoma, Lewis Lung , Cell Line, Tumor , Drug Delivery Systems , Female , HEK293 Cells , Humans , Melanoma, Experimental , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/biosynthesis , Myeloid Cells/metabolism , Oncogene Protein v-akt/physiology , PTEN Phosphohydrolase/physiology , Receptors, CXCR4/physiology , Signal Transduction/immunology
10.
Front Pharmacol ; 15: 1405163, 2024.
Article in English | MEDLINE | ID: mdl-38799158

ABSTRACT

Introduction: Sepsis is a clinical syndrome characterized by dysregulation of the host immune response due to infection, resulting in life-threatening organ damage. Despite active promotion and implementation of early preventative measures and bundle treatments, sepsis continues to exhibit high morbidity and mortality rates with no optimal pharmacological intervention available. Lobetyolin (LBT), the crucial component of polyacetylenes found in Codonopsis pilosula, has been scientifically proven to possess potent antioxidant and antitumor properties. However, its therapeutic potential for sepsis remains unknown. Methods: The mice received pretreatment with intraperitoneal injections of LBT, followed by injection with lipopolysaccharide (LPS) to induce sepsis. Peripheral blood samples were collected to detect TNF-α, IL-1ß, and IL-6 levels. The survival status of different groups was recorded at various time intervals. RNA-Seq was utilized for the analysis of gene expression in peritoneal macrophages treated with LBT or LPS. Results: In this study, we observed a significant increase in the survival rate of mice pretreated with LBT in LPS induced sepsis mouse model. LBT demonstrated a remarkable reduction in the production of IL-6, TNF-α, and IL-1ß in the serum, along with mitigated lung and liver tissue damage characterized by reduced inflammatory cell infiltration. Additionally, through RNA-seq analysis coupled with GO and KEGG analysis, it was revealed that LBT effectively suppressed genes associated with bacterium presence, cellular response to lipopolysaccharide stimulation, as well as cytokine-cytokine receptor interaction involving Cxcl10, Tgtp1, Gbp5, Tnf, Il1b and IRF7 specifically within macrophages. We also confirmed that LBT significantly downregulates the expression of IL-6, TNF-α, and IL-1ß in macrophage activation induced by LPS. Discussion: Therefore, our findings demonstrated that LBT effectively inhibits the production of inflammatory cytokines (IL-6, TNF-α, and IL-1ß) and mitigates sepsis induced by LPS through modulating macrophages' ability to generate these cytokines. These results suggest that LBT holds promise as a potential therapeutic agent for sepsis treatment.

11.
Life Sci ; 334: 122191, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37866807

ABSTRACT

Gamma-aminobutyric acid (GABA) is a multifunctional molecule that is widely present in the nervous system and nonneuronal tissues. It plays pivotal roles in neurotransmission, regulation of secretion, cell differentiation, proliferation, and tumorigenesis. However, the exact mechanisms of GABA in head and neck squamous cell carcinomas (HNSCCs) are unknown. We took advantage of RNA sequencing in this work and uncovered the potential gene expression profiles of the GABA-treated HNSCC cell line HN4-2. We found that the expression of CCND2 and BCL2L1 was significantly upregulated. Furthermore, GABA treatment inhibited the cell apoptosis induced by cisplatin and regulated the cell cycle after treatment with cisplatin in HN4-2 cells. Moreover, we also found that GABA could upregulate the expression of CCND2 and BCL2L1 after treatment with cisplatin. Our results not only reveal the potential pro-tumorigenic effect of GABA on HNSCCs but also provide a novel therapeutic target for HNSCC treatment.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Cisplatin/metabolism , Carcinoma, Squamous Cell/genetics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Apoptosis , Gene Expression Regulation, Neoplastic , Cyclin D2/genetics , Cyclin D2/metabolism , bcl-X Protein/metabolism
12.
Life Sci ; 317: 121474, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36746357

ABSTRACT

AIMS: Atopic dermatitis (AD) is a common chronic inflammatory skin disorder that affects up to 20 % of children and 10 % of adults worldwide; however, the exact molecular mechanisms remain largely unknown. MATERIALS AND METHODS: In this study, we used integrated transcriptomic and metabolomic analyses to study the potential mechanisms of 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD-like skin lesions. KEY FINDINGS: We found that DNCB induced AD-like skin lesions, including phenotypical and histomorphological alterations and transcriptional and metabolic alterations in mice. A total of 3413 differentially expressed metabolites were detected between DNCB-induced AD-like mice and healthy controls, which includes metabolites in taurine and hypotaurine metabolism, phenylalanine metabolism, biosynthesis of unsaturated fatty acids, tryptophan metabolism, arachidonic acid metabolism, pantothenate and CoA biosynthesis, pyrimidine metabolism, and glycerophospholipid metabolism pathways. Furthermore, the differentially expressed genes associated (DEGs) with these metabolic pathways were analyzed using RNA sequencing (RNA-seq), and we found that the expression of pyrimidine metabolism-associated genes was significantly increased. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the glycolysis/gluconeogenesis, glucagon signaling pathway and pentose phosphate pathway-associated metabolic genes were dramatically altered. SIGNIFICANCE: Our results explain the possible mechanism of AD at the gene and metabolite levels and provide potential targets for the development of clinical drugs for AD.


Subject(s)
Dermatitis, Atopic , Skin Diseases , Mice , Animals , Dermatitis, Atopic/chemically induced , Dinitrobenzenes/adverse effects , Dinitrobenzenes/metabolism , Dinitrochlorobenzene , Transcriptome , Cytokines/metabolism , Skin/metabolism , Skin Diseases/metabolism , Pyrimidines/metabolism , Mice, Inbred BALB C
13.
Stem Cell Res Ther ; 14(1): 147, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248497

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) is one of the most common immune and inflammatory skin disorders, leading to insufferable itching and skin abnormalities that seriously affect life quality of patients. There are still huge unmet needs for long-term and effective disease control, despite currently available therapies. Evidenced by some preclinical and clinical studies of AD treatment with stem cells, stem cell treatment could significantly and effectively ameliorate AD symptoms. OBJECTIVES: To elucidate underlying mechanisms of how stem cells therapy alleviates AD-like symptoms. METHODS: An AD-like mouse model was constructed and treated with mesenchymal stem cells (MSCs) subcutaneously or subcutaneously combined with intravenously. The differentially expressed genes were sorted out from RNA sequencing results of dorsal skin and blood. RESULTS: Two injection routes of MSCs could alleviate AD-like symptoms and pathologic changes of the skin and immune organs. RNA sequencing of dorsal skin sections and blood provided gene expression signatures for amelioration of skin defects, inflammatory and immune modulation by MSCs, as well as common AD molecular markers for the skin and blood, which may benefit for clinical diagnosis. IL-1ß and its signaling pathway were specifically found to be associated with the development of AD-like dermatitis lesions. MSC treatment effectively inhibited the JAK-STAT pathway and receptors of IL-4, IL-13, IL-17, and IgE. CONCLUSIONS: MSC therapy could regulate abnormal immune and inflammatory status in AD. Mechanistic exploration will contribute to the development of personalized AD treatment based on MSCs.


Subject(s)
Dermatitis, Atopic , Mesenchymal Stem Cells , Animals , Mice , Humans , Dermatitis, Atopic/therapy , Janus Kinases/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , Skin/pathology , Immunologic Factors/pharmacology , Mesenchymal Stem Cells/metabolism , Umbilical Cord/metabolism , Cytokines/metabolism
14.
Drug Des Devel Ther ; 17: 1593-1609, 2023.
Article in English | MEDLINE | ID: mdl-37260764

ABSTRACT

Background: As a keratolytic, salicylic acid (SA) can be topically applied in various formulations and doses in dermatology. Supramolecular SA hydrogel, a new SA formulation with higher bioavailability, is developed and commercially available nowadays. However, there still remain concerns that the long-term and continual application of SA at low concentrations may jeopardize the cutaneous barrier properties. Aim of the Study: To reveal the long-term effects of 0.5-5% supramolecular SA hydrogel on the skin barrier in normal mice models. Materials and Methods: The 0.5%, 1%, 2%, and 5% supramolecular SA hydrogel or hydrogel vehicle without SA was applied to mice's shaved dorsal skin once per day respectively. Tissue samples of the dorsal skin were harvested on day 14 and 28 of the serial application of SA for histopathological observation and transcriptomic analysis. Results: Following topical supramolecular SA hydrogel therapy with various concentrations of SA (0.5%, 1%, 2%, and 5%) for 14 days and 28 days, there were no obvious macroscopic signs of impaired cutaneous health and no inflammatory or degenerative abnormalities were observed in histological results. Additionally, the transcriptomic analysis revealed that on day 14, SA dramatically altered the expression of genes related to the extracellular matrix structural constituent. And on day 28, SA regulated gene expression profiles of keratinization, cornified envelope, and lipid metabolism remarkably. Furthermore, the expression of skin barrier related genes was significantly elevated after the application of SA based on RNA-seq results, and this is likely to be associated with the PPAR signaling pathway according to the enrichment analysis. Conclusion: Our findings demonstrated that the sustained topical administration of the 0.5-5% supramolecular SA hydrogel for up to 28 days did no harm to normal murine skin and upregulated the expression of genes related to the epidermal barrier.


Subject(s)
Hydrogels , Salicylic Acid , Mice , Animals , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Hydrogels/chemistry , Skin , Administration, Cutaneous , Administration, Topical , Homeostasis
15.
Life Sci ; 317: 121439, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36731645

ABSTRACT

Stress plays a critical role in hair loss, although the underlying mechanisms are largely unknown. γ-aminobutyric acid (GABA) has been reported to be associated with stress; however, whether it affects stress-induced hair growth inhibition is unclear. This study aimed to investigate the potential roles and mechanisms of action of GABA in chronic restraint stress (CRS)-induced hair growth inhibition. We performed RNA-seq analysis and found that differentially expressed genes (DEGs) associated with neuroactive ligand-receptor interaction, including genes related to GABA receptors, significantly changed after mice were treated with CRS. Targeted metabolomics analysis and enzyme-linked immunosorbent assay (ELISA) also showed that GABA levels in back skin tissues and serum significantly elevated in the CRS group. Notably, CRS-induced hair growth inhibition got aggravated by GABA and alleviated through GABAA antagonists, such as picrotoxin and ginkgolide A. RNA sequencing analysis revealed that DEGs related to the cell cycle, DNA replication, purine metabolism, and pyrimidine metabolism pathways were significantly downregulated in dermal papilla (DP) cells after GABA treatment. Moreover, ginkgolide A, a GABAA antagonist extracted from the leaves of Ginkgo biloba, promoted the cell cycle of DP cells. Therefore, the present study demonstrated that the increase in GABA could promote CRS-induced hair growth inhibition by downregulating the cell cycle of DP cells and suggested that ginkgolide A may be a promising therapeutic drug for hair loss.


Subject(s)
Ginkgolides , gamma-Aminobutyric Acid , Mice , Animals , gamma-Aminobutyric Acid/pharmacology , Ginkgolides/pharmacology , Hair , Alopecia , Hair Follicle
16.
Life Sci ; 326: 121788, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37230377

ABSTRACT

AIM: Psoriasis is one of the most common dermatological disorders, characterized by increased epidermal hyperplasia and immune cell infiltration. Psychological stress has been reported to contribute to the severity, aggravation, and relapse of psoriasis. However, the exact mechanism involved in psychological stress's impact on psoriasis is still unclear. We aim to investigate the role of psychological stress in psoriasis from a transcriptomic and metabolomic perspective. MAIN METHOD: We developed a chronic restrain stress (CRS)-imiquimod (IMQ)-induced psoriasis-like mouse model and performed a comprehensive comparative transcriptomic and metabolic analysis with control mice, CRS-treated mice, and IMQ-treated mice to investigate how psychological stress affects psoriasis. KEY FINDING: We found that CRS-IMQ-induced psoriasis-like mice showed significant exacerbation of psoriasis-like skin inflammation compared with mice treated with IMQ only. Mice of the CRS + IMQ group showed increased expression of keratinocyte proliferation and differentiation genes, differential regulation of cytokines, and promotion of linoleic acid metabolism. Correlation analysis of differentially expressed genes in the CRS-IMQ-induced psoriasis-like mice and human psoriasis datasets compared with respective controls revealed 96 overlapping genes of which 30 genes showed consistent induced or repressed expression in all human and mouse datasets. SIGNIFICANCE: Our study provides new insights into the effects of psychological stress on psoriasis pathogenesis and the mechanisms involved, which provides clues for development of therapeutics or biomarkers.


Subject(s)
Aminoquinolines , Psoriasis , Mice , Humans , Animals , Imiquimod/toxicity , Aminoquinolines/toxicity , Mice, Inbred BALB C , Psoriasis/chemically induced , Psoriasis/genetics , Sequence Analysis, RNA , Disease Models, Animal , Skin
17.
Cancer Lett ; 567: 216285, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37354982

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxia and hypovascular tumor microenvironment. Nucleolar and spindle associated protein 1 (NUSAP1) is a microtubule-associated protein that is known to be involved in cancer biology. Our study aimed to investigate the role of NUSAP1 in glycolytic metabolism and metastasis in PDAC. Expression and prognostic value of NUSAP1 in PDAC and common gastrointestinal tumors was evaluated. The function of NUSAP1 in PDAC progression was clarified by single-cell RNA-seq and further experiments in vitro, xenograft mouse model, spontaneous PDAC mice model and human tissue microarray. The downstream genes and signaling pathways regulated by NUSAP1 were explored by RNA-Seq. And the regulation of NUSAP1 on Lactate dehydrogenase A (LDHA)-mediated glycolysis and its underlying mechanism was further clarified by CHIP-seq. NUSAP1 was an independent unfavorable predictor of PDAC prognosis that playing a critical role in metastasis of PDAC by regulating LDHA-mediated glycolysis. Mechanically, NUSAP1 could bind to c-Myc and HIF-1α that forming a transcription regulatory complex localized to LDHA promoter region and enhanced its expression. Intriguingly, lactate upregulated NUSAP1 expression by inhibiting NUSAP1 protein degradation through lysine lactylated (Kla) modification, thus forming a NUSAP1-LDHA-glycolysis-lactate feedforward loop. The NUSAP1-LDHA-glycolysis-lactate feedforward loop is one of the underlying mechanisms to explain the metastasis and glycolytic metabolic potential in PDAC, which also provides a novel insights to understand the Warburg effect in cancer. Targeting NUSAP1 would be an attractive paradigm for PDAC treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Animals , Mice , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Microtubule-Associated Proteins/metabolism , Glycolysis/genetics , Lactates , Gene Expression Regulation, Neoplastic , L-Lactate Dehydrogenase/genetics , Cell Proliferation , Tumor Microenvironment , Pancreatic Neoplasms
18.
Pathol Oncol Res ; 28: 1610176, 2022.
Article in English | MEDLINE | ID: mdl-35665406

ABSTRACT

Background: Human papillomavirus type 8 (HPV8) has been implicated in the progress of non-melanoma skin cancers and their precursor lesions. The HPV8 E7 oncoprotein plays a key role in the tumorigenesis of HPV-associated cutaneous tumors. However, the exact role of HPV8 E7 in human epidermal carcinogenesis has not been fully elucidated. Methods: To investigate the potential carcinogenic effects of HPV8 E7 on epithelial cells, we used RNA-sequencing technology to analyze the gene expression profile of HPV8 E7-overexpressed normal human epidermal keratinocytes (NHEKs). Results: RNA-sequencing revealed 831 differentially expressed genes (DEGs) between HPV8 E7-expressing NHEKs and control cells, among which, 631 genes were significantly upregulated, and 200 were downregulated. Gene ontology annotation enrichment analysis showed that HPV8 E7 mainly affected the expression of genes associated with protein heterodimerization activity, DNA binding, nucleosomes, and nucleosome assembly. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that overexpression of HPV8 E7 affected the expression of gene clusters associated with viral carcinogenesis and transcriptional misregulation in cancer and necroptosis signaling pathways that reportedly play crucial roles in HPV infection promotion and cancer progression. We also found the DEGs, such as HKDC1 and TNFAIP3, were associated with epigenetic modifications, immune regulation, and metabolic pathways. Conclusion: Our results demonstrate that the pro-carcinogenic effect of HPV8 expression in epithelial cells may be attributed to the regulatory effect of oncogene E7 on gene expression associated with epigenetic modifications and immune and metabolic status-associated gene expression. Although our data are based on an in vitro experiment, it provides the theoretical evidence that the development of squamous cell carcinoma can be caused by HPV.


Subject(s)
Alphapapillomavirus , Oncogene Proteins, Viral , Papillomavirus Infections , Alphapapillomavirus/genetics , Alphapapillomavirus/metabolism , Carcinogenesis/metabolism , Humans , Keratinocytes/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , RNA , Transcriptome/genetics
19.
Oxid Med Cell Longev ; 2022: 1863098, 2022.
Article in English | MEDLINE | ID: mdl-35368866

ABSTRACT

Consistent high-risk human papillomavirus (HPV) infection leads to various malignant cancers. Autophagy can promote cancer progression by helping cancer cells survive under stress or induce oncogenic effects when mutations or abnormalities occur. Mitogen activated protein kinases (MAPKs) can transduce various external or intrinsic stimuli into cellular responses, including autophagy, and dual-specificity phosphates (DUSPs) contribute to the direct regulation of MAPK activities. Previously, we showed that expression of DUSP5 was repressed in HPV16 E7-expressing normal human epidermal keratinocytes (NHEKs). Here we show that clinical HPV16 E7-positive precancerous and cancerous tissues also demonstrate low DUSP5 levels compared with control tissues, indicating that the inverse correlation between HPV16 E7 and DUSP5 is clinically relevant. We furthermore investigated the autophagy response in both DUSP5-deficient and HPV16 E7-expressing NHEKs. Confocal microscopy and Western analysis showed induction of LC3-II levels, autophagosome formation and autophagy fluxes in DUSP5-deficient NHEKs. Furthermore, Western analysis demonstrated specific induction of phosphorylated ERK in DUSP5-deficient and HPV16 E7-expressing NHEKs, indicating that HPV16 E7-mediated repression of DUSP5 results in induced MAPK/ERK signaling. Finally, phosphorylated mTOR and ULK (S757) were reduced in DUSP5-deficient NHEKs, while phosphorylated ULK (S555) and AMPK were increased, thereby inducing canonical autophagy through the mTOR and AMPK pathways. In conclusion, our results demonstrate that HPV16 E7 expression reduces DUSP5 levels, which in turn results in active MAPK/ERK signaling and induction of canonical autophagy through mTOR and MAPK regulation. Given its demonstrated inverse correlation with clinical cancerous tissues, DUSP5 may serve as a potential therapeutic target for cervical cancer.


Subject(s)
Alphapapillomavirus , Uterine Cervical Neoplasms , Alphapapillomavirus/metabolism , Autophagy , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Female , Humans , Keratinocytes/metabolism , Uterine Cervical Neoplasms/genetics
20.
Front Mol Biosci ; 9: 781619, 2022.
Article in English | MEDLINE | ID: mdl-35198601

ABSTRACT

Psychological stress plays an important role in hair loss, but the underlying mechanisms are not well-understood, and the effective therapies available to regrow hair are rare. In this study, we established a chronic restraint stress (CRS)-induced hair growth inhibition mouse model and performed a comprehensive analysis of metabolomics and transcriptomics. Metabolomics data analysis showed that the primary and secondary metabolic pathways, such as carbohydrate metabolism, amino acid metabolism, and lipid metabolism were significantly altered in skin tissue of CRS group. Transcriptomics analysis also showed significant changes of genes expression profiles involved in regulation of metabolic processes including arachidonic acid metabolism, glutathione metabolism, glycolysis gluconeogenesis, nicotinate and nicotinamide metabolism, purine metabolism, retinol metabolism and cholesterol metabolism. Furthermore, RNA-Seq analyses also found that numerous genes associated with metabolism were significantly changed, such as Hk-1, in CRS-induced hair growth inhibition. Overall, our study supplied new insights into the hair growth inhibition induced by CRS from the perspective of integrated metabolomics and transcriptomics analyses.

SELECTION OF CITATIONS
SEARCH DETAIL