Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Phys Chem A ; 128(18): 3596-3603, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38656804

ABSTRACT

The vibrational and electronic spectroscopy of the radical cations of two nucleobases (NB) (uracil and thymine) was studied by cryogenic ion photodissociation spectroscopy. The radical cations have been generated from the photodissociation of NB-Ag+ complexes. A charge transfer process from the NB to Ag+ governs the deactivation mechanism, leading to the formation of the radical cation without further tautomerization. Single- and double-resonance spectroscopy allows for structural assignments of both the silver complexes and the radical cations by comparison with DFT-based calculations. Interestingly, a tautomer-dependent fragmentation is observed in the thymine enol form that involves the loss of NCO, a fragment which was never reported before for this NB. This selective photodissociation of silver complexes containing aromatic chromophore greatly expands the current technique to produce isomer-selected radical cations in the gas phase providing benchmark experimental data to assess calculations of open-shell species.

2.
Chemphyschem ; 24(2): e202200561, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36177693

ABSTRACT

The photodynamics of protonated tryptophan and its mono hydrated complex TrpH+ -H2 O has been revisited. A combination of steady-state IR and UV cryogenic ion spectroscopies with picosecond pump-probe photodissociation experiments sheds new lights on the deactivation processes of TrpH+ and conformer-selected TrpH+ -H2 O complex, supported by quantum chemistry calculations at the DFT and coupled-cluster levels for the ground and excited states, respectively. TrpH+ excited at the band origin exhibits a transient of less than 100 ps, assigned to the lifetime of the excited state proton transfer (ESPT) structure. The two experimentally observed conformers of TrpH+ -H2 O have been assigned. A striking result arises from the conformer-selective photodynamics of TrpH+ -H2 O, in which a single water molecule inserted in between the ammonium and the indole ring hinders the barrierless ESPT reaction responsible for the ultra-fast deactivation process observed in the other conformer and in bare TrpH+ .


Subject(s)
Protons , Tryptophan , Tryptophan/chemistry , Water
3.
J Phys Chem A ; 127(11): 2577-2590, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36905386

ABSTRACT

The mechanism for hydrocarbon ring growth in sooting environments is still the subject of considerable debate. The reaction of phenyl radical (C6H5) with propargyl radical (H2CCCH) provides an important prototype for radical-radical ring-growth pathways. We studied this reaction experimentally over the temperature range of 300-1000 K and pressure range of 4-10 Torr using time-resolved multiplexed photoionization mass spectrometry. We detect both the C9H8 and C9H7 + H product channels and report experimental isomer-resolved product branching fractions for the C9H8 product. We compare these experiments to theoretical kinetics predictions from a recently published study augmented by new calculations. These ab initio transition state theory-based master equation calculations employ high-quality potential energy surfaces, conventional transition state theory for the tight transition states, and direct CASPT2-based variable reaction coordinate transition state theory (VRC-TST) for the barrierless channels. At 300 K only the direct adducts from radical-radical addition are observed, with good agreement between experimental and theoretical branching fractions, supporting the VRC-TST calculations of the barrierless entrance channel. As the temperature is increased to 1000 K we observe two additional isomers, including indene, a two-ring polycyclic aromatic hydrocarbon, and a small amount of bimolecular products C9H7 + H. Our calculated branching fractions for the phenyl + propargyl reaction predict significantly less indene than observed experimentally. We present further calculations and experimental evidence that the most likely cause of this discrepancy is the contribution of H atom reactions, both H + indenyl (C9H7) recombination to indene and H-assisted isomerization that converts less stable C9H8 isomers into indene. Especially at low pressures typical of laboratory investigations, H-atom-assisted isomerization needs to be considered. Regardless, the experimental observation of indene demonstrates that the title reaction leads, either directly or indirectly, to the formation of the second ring in polycyclic aromatic hydrocarbons.

4.
Chem Rev ; 120(7): 3296-3327, 2020 04 08.
Article in English | MEDLINE | ID: mdl-31424927

ABSTRACT

A detailed understanding of radiative and nonradiative processes in peptides containing an aromatic chromophore requires the knowledge of the nature and energy level of low-lying excited states that could be coupled to the bright 1ππ* excited state. Isolated aromatic amino acids and short peptides provide benchmark cases to study, at the molecular level, the photoinduced processes that govern their excited state dynamics. Recent advances in gas phase laser spectroscopy of conformer-selected peptides have paved the way to a better, yet not fully complete, understanding of the influence of intramolecular interactions on the properties of aromatic chromophores. This review aims at providing an overview of the photophysics and photochemistry at play in neutral and charged aromatic chromophore containing peptides, with a particular emphasis on the charge (electron, proton) and energy transfer processes. A significant impact is exerted by the experimental progress in energy- and time-resolved spectroscopy of protonated species, which leads to a growing demand for theoretical supports to accurately describe their excited state properties.


Subject(s)
Amino Acids, Aromatic/chemistry , Peptides/chemistry , Amino Acids, Aromatic/radiation effects , Energy Transfer , Fluorescence , Fluorescence Resonance Energy Transfer , Peptides/radiation effects , Photochemistry , Protein Conformation , Protons , Spectrophotometry, Ultraviolet/methods , Ultraviolet Rays
5.
Phys Chem Chem Phys ; 24(41): 25182-25190, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36250320

ABSTRACT

Oxidation of the nucleobases is of great concern for the stability of DNA strands and is considered as a source of mutagenesis and cancer. However, precise spectroscopy data, in particular in their electronic excited states are scarce if not missing. We here report an original way to produce isomer-selected radical cations of DNA bases, exemplified in the case of cytosine, through the photodissociation of cold cytosine-silver (C-Ag+) complex. IR-UV dip spectroscopy of C-Ag+ features fingerprint bands for the two keto-amino cytosine tautomers. UV photodissociation (UVPD) of the isomer-selected C-Ag+ complexes produces the cytosine radical cation (C˙+) without isomerization. IR-UV cryogenic ion spectroscopy of C˙+ allows for the unambiguous structural assignment of the two keto-amino isomers of C˙+. UVPD spectroscopy of the isomer-selected C˙+ species is recorded at a unique spectral resolution. These benchmark spectroscopic data of the electronic excited states of C˙+ are used to assess the quantum chemistry calculations performed at the TD-DFT, CASSCF/CASPT2 and CASSCF/MRCI-F12 levels.


Subject(s)
Cytosine , DNA , Cytosine/chemistry , Isomerism , Spectrum Analysis , Cations/chemistry , DNA/chemistry
6.
J Chem Phys ; 157(13): 134305, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36209023

ABSTRACT

The first ππ* transition for protonated 2-, 3-, and 4-formylpyridine (FPH+) (m/z 108) is investigated by mass spectrometry coupled with photodissociation action spectroscopy at room temperature and 10 K. The photoproduct ions are detected over 35 000-43 000 cm-1, and the major product channel for 3-FPH+ and 4-FPH+ is the loss of CO forming protonated pyridine at m/z 80. For 2-FPH+, the CO loss product is present but a more abundant photoproduct arises from the loss of CH2O to form m/z 78. Plausible potential energy pathways that lead to dissociation are mapped out and comparisons are made to products arising from collision-induced dissociation. Although, in all cases, the elimination of CO is the overwhelming thermodynamically preferred pathway, the protonated 2-FPH+ results suggest that the CH2O product is kinetically driven and competitive with CO loss. In addition, for each isomer, radical photoproduct ions are detected at lower abundances. SCS-CC2/aug-cc-pVTZ Franck-Condon simulations assist with the assignment of vibrionic structure and adiabatic energies (0-0) for 2-FPH+ at 36 560 cm-1, 37 430 cm-1 for 3-FPH+, and 36 140 cm-1 for 4-FPH+, yielding an accurate prediction, on average, within 620 cm-1.


Subject(s)
Pyridines , Ions/chemistry , Mass Spectrometry/methods , Spectrum Analysis
7.
Phys Chem Chem Phys ; 22(20): 11498-11507, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32393956

ABSTRACT

We report a comprehensive study of the structures and deactivation processes of protonated adrenaline through cryogenic UV photodissociation spectroscopy. Single UV and double-resonance UV-UV hole burning spectroscopies have been performed and compared to coupled-cluster SCS-CC2 calculations performed on the ground and first electronic states. Three conformers were assigned, two lowest energy gauche conformers along with a higher energy conformer with an extended structure which is indeed the global minimum in solution. This demonstrates the kinetic trapping of this high energy gas phase conformer during the electrospray process. At the band origin of all conformers, the main fragmentation channel is the Cα-Cß bond cleavage, triggered by an excited state proton transfer to the catechol ring. Internal conversion leading to the water loss channel competes with the direct dissociation and tends to prevail with the increase of excess energy brought by the UV laser. Picosecond time-resolved pump-probe spectroscopy was performed to measure the excited state lifetimes of the three conformers of AdH+, which decay with the increase of excess energy in the ππ* state, from 2 ns at the band origin down to few hundreds of picoseconds 0.5 eV to the blue. Finally, about 0.8 eV above the band origin, the πσ* state is directly reached, leading to the opening of the H-loss channel.

8.
Phys Chem Chem Phys ; 21(38): 21329-21340, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31531442

ABSTRACT

The interaction of a water molecule with ferric heme-iron protoporphyrin ([PP FeIII]+) has been investigated in the gas phase in an ion trap and studied theoretically by density functional theory. It is found that the interaction of water with ferric heme leads to a stable [PP-FeIII-H2O]+ complex in the intermediate spin state (S = 3/2), in the same state as its unligated [PP-FeIII]+ homologue, without spin crossing during water attachment. Using the Van't Hoff equation, the reaction enthalpy for the formation of a Fe-OH2 bond has been determined for [PP-FeIII-H2O]+ and [PP-FeIII-(H2O)2]+. The corrected binding energy for a single Fe-H2O bond is -12.2 ± 0.6 kcal mol-1, while DFT calculations at the OPBE level yield -11.7 kcal mol-1. The binding energy of the second ligation yielding a six coordinated FeIII atom is decreased with a bond energy of -9 ± 0.9 kcal mol-1, well reproduced by calculations as -7.1 kcal mol-1. However, calculations reveal features of a weaker bond type, such as a rather long Fe-O bond with 2.28 Å for the [PP-FeIII-H2O]+ complex and the absence of a spin change by complexation. Thus despite a strong bond with H2O, the FeIII atom does not show, through theoretical modelling, a strong acceptor character in its half filled 3dz2 orbital. It is also observed that the binding properties of H2O to hemes seem strikingly specific to ferric heme and we have shown, experimentally and theoretically, that the affinity of H2O for protonated heme [H PP-Fe]+, an intermediate between FeIII and FeII, is strongly reduced compared to that for ferric heme.

9.
Phys Chem Chem Phys ; 21(4): 1750-1760, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30623949

ABSTRACT

The binding energy of CO, O2 and NO to isolated ferric heme, [FeIIIP]+, was studied in the presence and absence of a σ donor (N-methylimidazole and histidine) as the trans axial ligand. This study combines the experimental determination of binding enthalpies by equilibrium measurements in a low temperature ion trap using the van't Hoff equation and high level DFT calculations. It was found that the presence of N-methylimidazole as the axial ligand on the [FeIIIP]+ porphyrin dramatically weakens the [FeIIIP-ligand]+ bond with an up to sevenfold decrease in binding energy owing to the σ donation by N-methylimidazole to the FeIII(3d) orbitals. This trans σ donor effect is characteristic of ligation to iron in hemes in both ferrous and ferric redox forms; however, to date, this has not been observed for ferric heme.


Subject(s)
Hemin , Imidazoles , Binding Sites , Hemin/chemistry , Hemin/metabolism , Imidazoles/chemistry , Imidazoles/metabolism , Iron/chemistry , Iron/metabolism , Ligands , Thermodynamics
10.
J Phys Chem A ; 123(36): 7744-7750, 2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31408342

ABSTRACT

The UV photofragmentation spectra of cold cytosine-M+ complexes (M+: Na+, K+, Ag+) were recorded and analyzed through comparison with geometry optimizations and frequency calculations of the ground and excited states at the SCS-CC2/Def2-SVPD level of theory. While in all complexes, the ground state minimum geometry is planar (Cs symmetry), the ππ* state minimum geometry has the NH2 group slightly twisted and an out-of-plane metal cation. This was confirmed by comparing the simulated ππ* Franck-Condon spectra with the vibrationally resolved photofragmentation spectra of CytNa+ and CytK+. Vertical excitation transitions were also calculated to evaluate the energies of the CT states involving the transfer of an electron from the Cyt moiety to M+. For both CytK+ and CytNa+ complexes, the first CT state corresponds to an electron transfer from the cytosine aromatic π ring to the antibonding σ* orbital centered on the alkali cation. This πσ* state is predicted to lie much higher in energy (>6 eV) than the band origin of the π-π* electronic transition (around 4.3 eV) unlike what is observed for the CytAg+ complex for which the first excited state has a nOσ* electronic configuration. This is the reason for the absence of the Cyt+ + M charge transfer fragmentation channel for CytK+ and CytNa+ complexes.

11.
Phys Chem Chem Phys ; 20(9): 6134-6145, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29451581

ABSTRACT

Experimental and theoretical investigations of the excited states of protonated 1- and 2-aminonaphthalene are presented. The electronic spectra are obtained by laser induced photofragmentation of the ions captured in a cold ion trap. Using ab initio calculations, the electronic spectra can be assigned to different tautomers which have the proton on the amino group or on the naphthalene moiety. It is shown that the tautomer distribution can be varied by changing the electrospray source conditions, favoring either the most stable form in solution (amino protonation) or that in the gas phase (aromatic ring protonation). Calculations for larger amino-polyaromatics predict that these systems should behave as "proton sponges" i.e. have a proton affinity larger than 11 eV.

12.
Phys Chem Chem Phys ; 20(17): 11730-11739, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29687125

ABSTRACT

A combined theoretical and experimental approach has been used to investigate the binding energy of a ruthenium metalloporphyrin ligated with CO, ruthenium tetraphenylporphyrin [RuII TPP], in the RuII oxidation degree. Measurements performed with VUV ionization using the DESIRS beamline at Synchrotron SOLEIL led to adiabatic ionization energies of [RuII TPP] and its complex with CO, [RuII TPP-CO], of 6.48 ± 0.03 eV and 6.60 ± 0.03 eV, respectively, while the ion dissociation threshold of [RuII TPP-CO]+ is measured to be 8.36 ± 0.03 eV using the ground-state neutral complex. These experimental data are used to derive the binding energies of the CO ligand in neutral and cationic complexes (1.88 ± 0.06 eV and 1.76 ± 0.06 eV, respectively) using a Born-Haber cycle. Density functional theory calculations, in very satisfactory agreement with the experimental results, help to get insights into the metal-ligand bond. Notably, the high ligation energies can be rationalized in terms of the ruthenium orbital structure, which is singular compared to that of the iron atom. Thus, beyond indications of a strengthening of the Ru-CO bond due to the decrease in the CO vibrational frequency in the complex as compared to the Fe-CO bond, high-level calculations are essential to accurately describe the metal ligand (CO) bond and show that the Ru-CO bond energy is strongly affected by the splitting of triplet and singlet spin states in uncomplexed [Ru TPP].

13.
Chemistry ; 23(54): 13493-13500, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28744916

ABSTRACT

With a view to characterizing the influence of the electronic structure of the Fe atom on the nature of its bond with dioxygen (O2 ) in heme compounds, a study of the UV/Vis action spectra and binding energies of heme-O2 molecules has been undertaken in the gas phase. The binding reaction of protonated ferrous heme [FeII -hemeH]+ with O2 has been studied in the gas phase by determining the equilibrium of complexed [FeII -hemeH(O2 )]+ with uncomplexed protonated heme in an ion trap at controlled temperatures. The binding energy of O2 to the Fe atom of protonated ferrous heme was obtained from a van't Hoff plot. Surprisingly, this energy (1540±170 cm-1 , 18.4±2 kJ mol-1 ) is intermediate between those of ferric heme and ferrous heme. This result is interpreted in terms of a delocalization of the positive charge over the porphyrin cycle, such that the Fe atom bears a fractional positive charge. The resulting electron distribution on the Fe atom differs notably from that of a purely low-spin ferrous heme [FeII -heme(O2 )] complex, as deduced from its absorption spectrum. It also differs from that of ferric heme [FeIII -heme(O2 )]+ , as evidenced by the absorption spectra. Protonated heme creates a specific bond that cannot accommodate strong σ donation.


Subject(s)
Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Gases/chemistry , Heme/chemistry , Oxygen/chemistry , Kinetics , Protons , Spectrophotometry , Temperature , Thermodynamics
14.
J Phys Chem A ; 121(34): 6429-6439, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28777573

ABSTRACT

Charge transfer reactions are ubiquitous in chemical reactivity and often viewed as ultrafast processes. For DNA, femtochemistry has undeniably revealed the primary stage of the deactivation dynamics of the locally excited state following electronic excitation. We here demonstrate that the full time scale excited state dynamics can be followed up to milliseconds through an original pump-probe photodissociation scheme applied to cryogenic ion spectroscopy. Protonated cytosine is chosen as a benchmark system in which the locally excited 1ππ* state decays in the femtosecond range toward long-lived charge transfer and triplet states with lifetimes ranging from microseconds to milliseconds, respectively. A three-step mechanism (1ππ* → 1CT → 3ππ*) is proposed where internal conversion from each state can occur leading ultimately to fragmentation in the ground electronic state.

15.
Phys Chem Chem Phys ; 18(34): 23785-94, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27524459

ABSTRACT

The excited state dynamics of protonated ortho (2-) and para (4-) dimethyl aminopyridine molecules (DMAPH(+)) has been studied through pump-probe photofragmentation spectroscopy and excited state coupled-cluster CC2 calculations. Multiscale temporal dynamics has been recorded over 9 orders of magnitude from subpicosecond to millisecond. The initially locally excited ππ* state rapidly decays within about 100 fs into a charge transfer state following 90° twist motion of the dimethyl amino group. While this twisted intramolecular charge transfer (TICT) state does not trigger any fragmentation, it selectively leads to specific two-color photofragments through absorption of the probe photon at 355 nm. Besides, the optically dark TICT state provides an efficient deactivation path with high intersystem probability to non-dissociative long-lived triplet states. Such a multiscale pump-probe photodissociation scheme paves the way to systematic studies of charge transfer reactions in the excited state of cold ionic systems stored in a cryogenic cooled ion trap and probed continuously up to the millisecond time scale.

16.
Phys Chem Chem Phys ; 18(30): 20126-34, 2016 Jul 27.
Article in English | MEDLINE | ID: mdl-27110833

ABSTRACT

The excited state lifetimes of DNA bases are often very short due to very efficient non-radiative processes assigned to the ππ*-nπ* coupling. A set of protonated aromatic diazine molecules (pyridazine, pyrimidine and pyrazine C4H5N2(+)) and protonated pyrimidine DNA bases (cytosine, uracil and thymine), as well as the protonated pyridine (C5H6N(+)), have been investigated. For all these molecules except one tautomer of protonated uracil (enol-keto), electronic spectroscopy exhibits vibrational line broadening. Excited state geometry optimization at the CC2 level has been conducted to find out whether the excited state lifetimes measured from line broadening can be correlated to the calculated ordering of the ππ* and nπ* states and the ππ*-nπ* energy gap. The short lifetimes, observed when one nitrogen atom of the ring is not protonated, can be rationalized by relaxation of the ππ* state to the nπ* state or directly to the electronic ground state through ring puckering.

17.
J Phys Chem A ; 120(21): 3797-809, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27171787

ABSTRACT

The excited state properties of protonated ortho (2-), meta (3-), and para (4-) aminopyridine molecules have been investigated through UV photofragmentation spectroscopy and excited state coupled-cluster CC2 calculations. Cryogenic ion spectroscopy allows recording well-resolved vibronic spectroscopy that can be reproduced through Franck-Condon simulations of the ππ* local minimum of the excited state potential energy surface. The excited state lifetimes have also been measured through a pump-probe excitation scheme and compared to the estimated radiative lifetimes. Although protonated aminopyridines are rather simple aromatic molecules, their deactivation mechanisms are indeed quite complex with unexpected results. In protonated 3- and 4-aminopyridine, the fragmentation yield is negligible around the band origin, which implies the absence of internal conversion to the ground state. Besides, a twisted intramolecular charge transfer reaction is evidenced in protonated 4-aminopyridine around the band origin, while excited state proton transfer from the pyridinic nitrogen to the adjacent carbon atom opens with roughly 500 cm(-1) of excess energy.

18.
Phys Chem Chem Phys ; 17(39): 25854-62, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-25971335

ABSTRACT

We present a comprehensive experimental study of protonated tyramine ions in a cold 3D quadrupole ion trap coupled to a time-of-flight mass spectrometer. Multiple UV photodissociation techniques have been developed, including single and double resonance spectroscopy along with time-resolved excited state lifetime measurements through a picosecond pump-probe scheme. An original UV-UV hole burning method is presented which can be used without modification of the quadrupole ion trap. The electronic spectrum of the cold protonated tyramine exhibits well-defined vibronic transitions, allowing the firm assignment of its two low-lying energy conformations by comparison with CC2 ab initio excited state calculations.

19.
Phys Chem Chem Phys ; 17(39): 25693-9, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26059068

ABSTRACT

While ferrous heme (Fe(II)) within hemoproteins binds dioxygen efficiently, it has not yet been possible to observe the analog complex with ferric heme (Fe(III)). We present the first observation and characterization of the latter complex in a cooled ion trap. The bond formation enthalpy of ferric heme-O2 has been derived from the Van't Hoff equation by means of temperature dependent measurements. The binding energy of the [heme Fe(III)-O2](+) ionic complex is rather strong as compared to that of [heme Fe(III)-N2](+), showing the formation of an incipient Fe-O bond, which is confirmed by the electronic absorption spectra of the two complexes. This first observation of the [heme Fe(III)-O2](+) complex lays the basis for the precise description of its electronic states.


Subject(s)
Ferric Compounds/chemistry , Heme/chemistry , Iron/chemistry , Oxygen/chemistry , Binding Sites , Hemeproteins/chemistry , Models, Molecular , Thermodynamics
20.
J Phys Chem A ; 119(23): 5914-24, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25248102

ABSTRACT

The electronic spectroscopy and the electronic excited state properties of cold protonated phenylalanine and protonated tyrosine have been revisited on a large spectral domain and interpreted by comparison with ab initio calculations. The protonated species are stored in a cryogenically cooled Paul trap, maintained at ∼10 K, and the parent and all the photofragment ions are mass-analyzed in a time-of-flight mass spectrometer, which allows detecting the ionic species with an improved mass resolution compared to what is routinely achieved with a quadrupole mass spectrometer. These new results emphasize the competition around the band origin between two proton transfer reactions from the ammonium group toward either the aromatic chromophore or the carboxylic acid group. These reactions are initiated by the coupling of the locally excited ππ* state with higher charge transfer states, the positions and coupling of which depend on the conformation of the protonated molecules. Each of these reaction processes gives rise to specific fragmentation channels that supports the conformer selectivity observed in the photofragmentation spectra of protonated tyrosine and phenylalanine.


Subject(s)
Light , Phenylalanine/chemistry , Quantum Theory , Tyrosine/chemistry , Electronics , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL