Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Plant Biol ; 24(1): 508, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844843

ABSTRACT

Phytophthora cinnamomi Rands is a highly prevalent phytopathogen worldwide, ranking among the top ten in terms of distribution. It inflicts crown rot, canker, and root rot on numerous plant species, significantly impacting the biodiversity of both flora and fauna within affected environments. With a host range spanning over 5,000 species, including important plants like Quercus suber, Quercus ilex, Castanea sativa, and commercially significant crops such as avocado (Persea americana), maize (Zea mays), and tomato (Solanum lycopersicum), Phytophthora cinnamomi poses a substantial threat to agriculture and ecosystems. The efficient dissemination of the oomycete relies on its short-lived asexually motile zoospores, which depend on water currents to infect host roots. However, managing these zoospores in the laboratory has long been challenging due to the complexity of the life cycle. Current protocols involve intricate procedures, including alternating cycles of growth, drought, and flooding. Unfortunately, these artificial conditions often result in a rapid decline in virulence, necessitating additional steps to maintain infectivity during cultivation. In our research, we sought to address this challenge by investigating zoospore survival under various conditions. Our goal was to develop a stable stock of zoospores that is both easily deployable and highly infective. Through direct freezing in liquid nitrogen, we have successfully preserved their virulence. This breakthrough eliminates the need for repeated culture transfers, simplifying the process of plant inoculation. Moreover, it enables more comprehensive studies of Phytophthora cinnamomi and its interactions with host plants.


Subject(s)
Phytophthora , Plant Diseases , Phytophthora/physiology , Plant Diseases/microbiology , Host-Pathogen Interactions , Plant Roots/microbiology , Spores/physiology
2.
Sci Rep ; 14(1): 19357, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169119

ABSTRACT

In recent decades an extensive mortality and decline of Quercus suber populations mainly caused by Phytophthora cinnamomi has been observed. In the current study, a chestnut gene homologous to ginkbilobin-2 (Cast_Gnk2-like), which in Ginkgo biloba codifies an antifungal protein, was transferred into cork oak somatic embryos of three different embryogenic lines by Agrobacterium mediated transformation. The transformation efficiency varied on the genotype from 2.5 to 9.2%, and a total of 22 independent transformed lines were obtained. The presence of Cast_Gnk2-like gene in transgenic embryos was verified in all lines by PCR. The number of transgene copies was estimated by qPCR in embryogenic lines with high proliferation ability and it varied between 1 and 5. In addition, the expression levels of Cast_Gnk2-like gene were determined in the embryogenic lines, with higher levels in lines derived from the genotype ALM6-WT. Transgenic plants were obtained from all transgenic lines and evaluated after cold storage of the somatic embryos for 2 months and subsequent transfer to germination medium. In vitro tolerance tests made under controlled conditions and following zoospore treatment showed that plants overexpressing Cast_Gnk2-like gene improved tolerance against Pc when compared to wild type ones.


Subject(s)
Phytophthora , Plant Diseases , Plants, Genetically Modified , Quercus , Phytophthora/genetics , Quercus/genetics , Quercus/microbiology , Plants, Genetically Modified/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Proteins/genetics , Gene Expression Regulation, Plant , Seeds/genetics , Disease Resistance/genetics , Transformation, Genetic
4.
Plants (Basel) ; 11(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015446

ABSTRACT

Plant essential oils (EOs) are gaining interest as biopesticides for crop protection. EOs have been recognized as important ingredients of plant protection products including insecticidal, acaricidal, fungicidal, and nematicidal agents. Considering the growing importance of EOs as active ingredients, the domestication and cultivation of Medicinal and Aromatic Plants (MAPs) to produce chemically stable EOs contributes to species conservation, provides the sustainability of production, and decreases the variations in the active ingredients. In addition to these direct effects on plant pests and diseases, EOs can induce plant defenses (priming effects) resulting in better protection. This aspect is of relevance considering that the EU framework aims to achieve the sustainable use of new plant protection products (PPPs), and since 2020, the use of contaminant PPPs has been prohibited. In this paper, we review the most updated information on the direct plant protection effects of EOs, focusing on their modes of action against insects, fungi, and nematodes, as well as the information available on EOs with plant defense priming effects.

5.
Front Plant Sci ; 13: 804104, 2022.
Article in English | MEDLINE | ID: mdl-35422834

ABSTRACT

In this work, we studied the direct and indirect plant protection effects of an Artemisia absinthium essential oil (AEO) on tomato seedlings against Fusarium oxysporum sp. oxysporum radicis lycopersici (Fol). AEO exhibited a toxic effect in vitro against Fol. Additionally, tomato seedlings germinated from seeds pretreated with AEO and grown hydroponically were protected against Fol. Plant disease symptoms, including, water and fresh weight loss, tissue necrosis, and chlorosis were less pronounced in AEO-treated seedlings. AEO also contributed to plant defenses by increasing callose deposition and the production of reactive oxygen species (ROS) on seed surfaces without affecting seed germination or plant development. The essential oil seed coating also primed a durable tomato seedling defense against the fungus at later stages of plant development. RNA-seq and metabolomic analysis performed on seedlings after 12 days showed that the AEO treatment on seeds induced transcriptomic and metabolic changes. The metabolomic analysis showed an induction of vanillic acid, coumarin, lycopene, oleamide, and an unknown metabolite of m/z 529 in the presence of Fol. The StNRPD2 gene, the second largest component of RNA polymerases IV and V directly involved in de novo cytosine methylation by RNA-directed DNA methylation (RdDM), was highly induced in the presence of AEO. The host methionine cycle (MTC) controlling trans-methylation reactions, was also altered by AEO through the high induction of S-adenosyl methionine transferases (SAMts). Our results suggest that AEO treatment could induce de novo epigenetic changes in tomato, modulating the speed and extent of its immune response to Fol. The EO-seed coating could be a new strategy to prime durable tomato resistance, compatible with other environmentally friendly biopesticides.

SELECTION OF CITATIONS
SEARCH DETAIL