Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
J Exp Biol ; 223(Pt 23)2020 12 11.
Article in English | MEDLINE | ID: mdl-33139391

ABSTRACT

Sex-biased dispersal is common in social species, but the dispersing sex may delay emigration if associated benefits are not immediately attainable. In the social Hymenoptera (ants, some bees and wasps), newly emerged males typically disperse from the natal nest whilst most females remain as philopatric helpers. However, little information exists on the mechanisms regulating male dispersal. Furthermore, the conservation of such mechanisms across the Hymenoptera and any role of sexual maturation are also relatively unknown. Through field observations and mark-recapture, we observed that males of the social paper wasp Polistes lanio emerge from pupation sexually immature, and delay dispersal from their natal nest for up to 7 days whilst undergoing sexual maturation. Delayed dispersal may benefit males by allowing them to mature in the safety of the nest and thus be more competitive in mating. We also demonstrate that both male dispersal and maturation are associated with juvenile hormone (JH), a key regulator of insect reproductive physiology and behaviour, which also has derived functions regulating social organisation in female Hymenoptera. Males treated with methoprene (a JH analogue) dispersed earlier and possessed significantly larger accessory glands than their age-matched controls. These results highlight the wide role of JH in social hymenopteran behaviour, with parallel ancestral functions in males and females, and raise new questions on the nature of selection for sex-biased dispersal.


Subject(s)
Wasps , Animals , Female , Juvenile Hormones , Male , Methoprene , Reproduction , Sexual Maturation
2.
Proc Biol Sci ; 286(1914): 20191676, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31690237

ABSTRACT

Biocontrol agents can help reduce pest populations as part of an integrated pest management scheme, with minimal environmental consequences. However, biocontrol agents are often non-native species and require significant infrastructure; overuse of single agents results in pest resistance. Native biocontrol agents are urgently required for more sustainable multi-faceted approaches to pest management. Social wasps are natural predators of lepidopteran pests, yet their viability as native biocontrol agents is largely unknown. Here, we provide evidence that the social paper wasp Polistes satan is a successful predator on the larvae of two economically important and resilient crop pests, the sugarcane borer Diatraea saccharalis (on sugarcane Saccharum spp.) and the fall armyworm Spodoptera frugiperda (on maize Zea mays); P. satan wasps significantly reduce crop pest damage. These results provide the much-needed baseline experimental evidence that social wasps have untapped potential as native biocontrol agents for sustainable crop production and food security.


Subject(s)
Pest Control, Biological , Wasps/physiology , Animals , Behavior, Animal , Hemolysin Proteins , Moths , Social Behavior
3.
Mol Ecol ; 28(13): 3271-3284, 2019 07.
Article in English | MEDLINE | ID: mdl-31141235

ABSTRACT

Explaining the evolution of helping behaviour in the eusocial insects where nonreproductive ("worker") individuals help raise the offspring of other individuals ("queens") remains one of the most perplexing phenomena in the natural world. Polistes paper wasps are popular study models, as workers retain the ability to reproduce: such totipotency is likely representative of the early stages of social evolution. Polistes is thought to have originated in the tropics, where seasonal constraints on reproductive options are weak and social groups are effectively perennial. Yet, most Polistes research has focused on nontropical species, where seasonality causes family groups to disperse; cofoundresses forming new nests the following spring are often unrelated, leading to the suggestion that direct fitness through nest inheritance is key in the evolution of helping behaviour. Here, we present the first comprehensive genetic study of social structure across the perennial nesting cycle of a tropical Polistes-Polistes canadensis. Using both microsatellites and newly developed single nucleotide polymorphism markers, we show that adult cofoundresses are highly related and that brood production is monopolized by a single female across the nesting cycle. Nonreproductive cofoundresses in tropical Polistes therefore have the potential to gain high indirect fitness benefits as helpers from the outset of group formation, and these benefits persist through the nesting cycle. Direct fitness may have been less important in the origin of Polistes sociality than previously suggested. These findings stress the importance of studying a range of species with diverse life history and ecologies when considering the evolution of reproductive strategies.


Subject(s)
Genetic Fitness , Helping Behavior , Nesting Behavior , Wasps/physiology , Animals , Female , Genetic Markers , Genotype , Male , Microsatellite Repeats , Panama , Polymorphism, Single Nucleotide , Reproduction , Wasps/genetics
4.
Ecology ; 99(10): 2405, 2018 10.
Article in English | MEDLINE | ID: mdl-29999519

ABSTRACT

Cooperative breeding decreases the direct reproductive output of subordinate individuals, but cooperation can be evolutionarily favored when there are challenges or constraints to breeding independently. Environmental factors, including temperature, precipitation, latitude, high seasonality, and environmental harshness have been hypothesized to correlate with the presence of cooperative breeding. However, to test the relationship between cooperation and ecological constraints requires comparative data on the frequency and variation of cooperative breeding across differing environments, ideally replicated across multiple species. Paper wasps are primitively social species, forming colonies composed of reproductively active dominants and foraging subordinates. Adult female wasps, referred to as foundresses, initiate new colonies. Nests can be formed by a single solitary foundress (noncooperative) or by multiple foundress associations (cooperative). Cooperative behavior varies within and among species, making paper wasps species well suited to disentangling ecological correlates of variation in cooperative behavior. This data set reports the frequency and extent of cooperative nest founding for 87 paper wasp species. Data were assembled from more than 170 published sources, previously unpublished field observations, and photographs contributed by citizen scientists to online natural history repositories. The data set includes 25,872 nest observations and reports the cooperative behavioral decisions for 45,297 foundresses. Species names were updated to reflect modern taxonomic revisions. The type of substrate on which the nest was built is also included, when available. A smaller population-level version of this data set found that the presence or absence of cooperative nesting in paper wasps was correlated with temperature stability and environmental harshness, but these variables did not predict the extent of cooperation within species. This expanded data set contains details about individual nests and further increases the power to address the relationship between the environment and the presence and extent of cooperative breeding. Beyond the ecological drivers of cooperation, these high-resolution data will be useful for future studies examining the evolutionary consequences of variation in social behavior. This data set may be used for research or educational purposes provided that this data paper is cited.

5.
PeerJ ; 3: e848, 2015.
Article in English | MEDLINE | ID: mdl-25825677

ABSTRACT

Insects have been used as an exemplary model in studying longevity, from extrinsic mortality pressures to intrinsic senescence. In the highly eusocial insects, great degrees of variation in lifespan exist between morphological castes in relation to extreme divisions of labour, but of particular interest are the primitively eusocial insects. These species represent the ancestral beginnings of eusociality, in which castes are flexible and based on behaviour rather than morphology. Here we present data on the longevity of the primitively eusocial Neotropical paper wasp P. canadensis, in a captive setting removed of environmental hazards. Captive Polistes canadensis had an average lifespan of 193 ± 10.5 days; although this average is shorter than most bee and ant queens, one individual lived for 506 days in the lab-longer than most recorded wasps and bees. Natal colony variation in longevity does exist between P. canadensis colonies, possibly due to nutritional and genetic factors. This study provides a foundation for future investigations on the effects of intrinsic and extrinsic factors on longevity in primitively eusocial insects, as well as the relationship with natal group and cohort size.

SELECTION OF CITATIONS
SEARCH DETAIL