ABSTRACT
BACKGROUND: It remains uncertain if invasive coronary physiology beyond fractional flow reserve (FFR) can refine lesion selection for revascularization or provide additional prognostic value. Coronary flow reserve (CFR) equals the ratio of hyperemic to baseline flow velocity and has a wealth of invasive and noninvasive data supporting its validity. Because of fundamental physiologic relationships, binary classification of FFR and CFR disagrees in approximately 30%-40% of cases. Optimal management of these discordant cases requires further study. AIM: The aim of the study was to determine the prognostic value of combined FFR and CFR measurements to predict the 24-month rate of major adverse cardiac events. Secondary end points include repeatability of FFR and CFR, angina burden, and the percentage of successful FFR/CFR measurements which will not be excluded by the core laboratory. METHODS: This prospective, nonblinded, nonrandomized, and multicenter study enrolled 455 subjects from 12 sites in Europe and Japan. Patients underwent physiologic lesion assessment using the 0.014" Philips Volcano ComboWire XT that provides simultaneous pressure and Doppler velocity sensors. Intermediate coronary lesions received only medical treatment unless both FFR (≤0.8) and CFR (<2.0) were below thresholds. The primary outcome is a 24-month composite of death from any cause, myocardial infarction, and revascularization. CONCLUSION: The DEFINE-FLOW study will determine the prognostic value of invasive CFR assessment when measured simultaneously with FFR, with a special emphasis on discordant classifications. Our hypothesis is that lesions with an intact CFRâ¯≥â¯2.0 but reduced FFRâ¯≤â¯0.8 will have a 2-year outcome with medical treatment similar to lesions with FFR>â¯0.80 and CFRâ¯≥â¯2.0. Enrollment has been completed, and final follow-up will occur in November 2019.
Subject(s)
Blood Flow Velocity/physiology , Coronary Stenosis/diagnosis , Coronary Vessels/physiopathology , Fractional Flow Reserve, Myocardial/physiology , Monitoring, Physiologic/instrumentation , Aged , Cardiac Catheterization/methods , Coronary Stenosis/physiopathology , Coronary Vessels/diagnostic imaging , Echocardiography, Doppler , Female , Follow-Up Studies , Humans , Male , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , Severity of Illness IndexABSTRACT
The present study sought to compare the temporal relation between maximal coronary flow (peak hyperemia) and minimal coronary-to-aortic pressure ratio (Pd/Pa) for intracoronary (IC) and intravenous (IV) adenosine administration. Peak hyperemia is assumed to coincide with the minimal Pd/Pa value. However, this has not been confirmed for systemic hemodynamic variations during IV adenosine infusion. Hemodynamic responses to IV and IC adenosine administration were obtained in 12 patients (14 lesions) using combined IC pressure and flow velocity measurements. A fluid dynamic model was used to predict the change in Pd/Pa for different stenosis severities and varying Pa Hemodynamic variability during IV adenosine hyperemia was greater than during IC adenosine, as assessed by the coefficient of variation. During IV adenosine, flow velocity peaked 28 ± 4 (SE) s after the onset of hyperemia, while Pd/Pa reached a minimum (0.82 ± 0.01) 22 ± 7 s later (P < 0.05), when Pa had declined by 6.1% and hyperemic velocity by 4.5% (P < 0.01). Model outcomes corroborated the role of variable Pa in this dissociation. In contrast, maximal flow and minimal Pd/Pa coincided for IC adenosine, with IV-equivalent peak velocities and a higher Pd/Pa ratio (0.86 ± 0.01, P < 0.01). Hemodynamic variability during continuous IV adenosine infusion can lead to temporal dissociation of minimal Pd/Pa and peak hyperemia, in contrast to IC adenosine injection, where maximal velocity and minimal Pd/Pa coincide. Despite this variability, stenosis hemodynamics remained stable with both ways of adenosine administration. Our findings suggest advantages of IC over IV adenosine to identify maximal hyperemia from pressure-only measurements.NEW & NOTEWORTHY Systemic hemodynamic variability during intravenous adenosine infusion produces substantial temporal dissociation between peak hyperemia appraised by coronary flow velocity and the minimal distal-to-aortic pressure ratio commonly used to determine functional stenosis severity. This dissociation was absent for intracoronary adenosine administration and tended to be mitigated in patients receiving Ca2+ antagonists.
Subject(s)
Adenosine/pharmacology , Blood Pressure/physiology , Cardiovascular Agents/pharmacology , Hyperemia/chemically induced , Hyperemia/physiopathology , Adenosine/administration & dosage , Aged , Aorta , Arterial Pressure/drug effects , Cardiovascular Agents/administration & dosage , Cohort Studies , Coronary Vessels , Female , Fractional Flow Reserve, Myocardial/drug effects , Hemodynamics/drug effects , Humans , Infusions, Intravenous , Male , Middle Aged , Retrospective StudiesABSTRACT
Baseline assessment of functional stenosis severity has been proposed as a practical alternative to hyperemic indices. However, intact autoregulation mechanisms may affect intracoronary hemodynamics. The aim of this study was to investigate the effect of changes in aortic pressure (Pa) and heart rate (HR) on baseline coronary hemodynamics and functional stenosis assessment. In 15 patients (55 ± 3% diameter stenosis) Pa, intracoronary pressure (Pd) and flow velocity were obtained at control, and during atrial pacing at 120 bpm, increased Pa (+30 mmHg) with intravenous phenylephrine (PE), and elevated Pa while pacing at sinus heart rate (PE + sHR). We derived rate pressure product (RPP = systolic Pa × HR), baseline microvascular resistance (BMR = Pd/velocity), and stenosis resistance [BSR = (Pa - Pd)/velocity] as well as whole-cycle Pd/Pa. Tachycardia (120 ± 1 bpm) raised RPP by 74% vs. CONTROL: Accordingly, BMR decreased by 27% (p < 0.01) and velocity increased by 36% (p < 0.05), while Pd/Pa decreased by 0.05 ± 0.02 (p < 0.05) and BSR remained similar to control. Raising Pa to 121 ± 3 mmHg (PE) with concomitant reflex bradycardia increased BMR by 26% (p < 0.001) at essentially unchanged RPP and velocity. Consequently, BSR and Pd/Pa were only marginally affected. During PE + sHR, velocity increased by 21% (p < 0.01) attributable to a 46% higher RPP (p < 0.001). However, BMR, BSR, and Pd/Pa remained statistically unaffected. Nonetheless, the interventions tended to increase functional stenosis severity, causing Pd/Pa and BSR of borderline lesions to cross the diagnostic threshold. In conclusion, coronary microvascular adaptation to physiological conditions affecting metabolic demand at rest influences intracoronary hemodynamics, which may lead to altered basal stenosis indices used for clinical decision-making.
Subject(s)
Adaptation, Physiological/physiology , Arterial Pressure/physiology , Coronary Stenosis/diagnosis , Coronary Stenosis/physiopathology , Heart Rate/physiology , Coronary Circulation/physiology , Female , Humans , Male , Middle Aged , Retrospective StudiesABSTRACT
Development of collateral vessels, arteriogenesis, may protect against tissue ischemia, however, quantitative data on this process remain scarce. We have developed a technique for replicating the entire arterial network of ischemic rat hindlimbs in three dimensions (3D) based on vascular casting and automated sequential cryo-imaging. Various dilutions of Batson's No. 17 with methyl methacrylate were evaluated in healthy rats, with further protocol optimization in ischemic rats. Penetration of the resin into the vascular network greatly depended on dilution; the total length of casted vessels below 75 µm was 13-fold higher at 50% dilution compared with the 10% dilution. Dilutions of 25-30%, with transient clamping of the healthy iliac artery, were optimal for imaging the arterial network in unilateral ischemia. This protocol completely filled the lumina of small arterioles and collateral vessels. These appeared as thin anastomoses in healthy legs and increasingly larger vessels during ligation (median diameter 1 week: 63 µm, 4 weeks: 127 µm). The presented combination of quality casts with high-resolution cryo-imaging enables automated, detailed 3D analysis of collateral adaptation, which furthermore can be combined with co-registered 3D distributions of fluorescent molecular imaging markers reflecting biological activity or perfusion.
Subject(s)
Blood Vessels/diagnostic imaging , Blood Vessels/pathology , Hindlimb/blood supply , Hindlimb/diagnostic imaging , Imaging, Three-Dimensional/methods , Ischemia/diagnostic imaging , Ischemia/pathology , Animals , Arterioles/diagnostic imaging , Arterioles/pathology , Corrosion Casting , Epoxy Resins , Histological Techniques/methods , Ligation , Male , Methylmethacrylates/chemistry , Rats , Rats, Sprague-DawleyABSTRACT
Following myocardial infarction and atherosclerotic lesion development, monocytes contribute to myocardial protection and repair, while also partaking in myocardial ischemic injury. The balance of proinflammatory and reparative monocyte subsets is crucial in governing these therapeutic and pathological outcomes. Myocardial ischemic damage displays heterogeneity across the myocardium, whereby the subendocardium shows greatest vulnerability to ischemic damage. In this study we examined the transmural distribution of monocyte subsets in response to gradual coronary artery occlusion. CD14(+) monocytes were isolated from peripheral blood of New Zealand White rabbits and divided into two subgroups based on the expression of CD62L. We employed a rabbit model of progressive coronary artery obstruction to induce chronic myocardial ischemia and reinfused fluorescently labeled autologous monocytes. The distribution of fluorescently labeled autologous monocytes was examined with a high-resolution three-dimensional imaging cryomicrotome. The subepicardial layer contained the largest infiltration of both monocyte subgroups, with a significantly greater proportion of CD14(+)CD62L(+) monocytes at the time when the ischemic area was at a maximum. By targeting CD13(+) angiogenic vessels, we confirmed the presence of angiogenesis in epicardial and midmyocardial regions. These myocardial regions demonstrated the highest level of infiltration of both monocyte subsets. Furthermore, CD14(+)CD62L(+) monocytes showed significantly greater migration towards monocyte chemoattractant protein-1, greater adhesive capacity, and higher expression of C-C chemokine receptor type-2 relative to CD14(+)CD62L(-) monocytes. In conclusion, we note selective subepicardial distribution of monocyte subpopulations, with changes in proportion depending on the time after onset of coronary narrowing. Selective homing is supported by divergent migratory properties of each respective monocyte subgroup.
Subject(s)
Chemotaxis, Leukocyte , Coronary Stenosis/pathology , Coronary Vessels/pathology , Monocytes/pathology , Myocardial Infarction/pathology , Myocardium/pathology , Animals , Biomarkers/blood , CD13 Antigens/metabolism , Cells, Cultured , Constriction , Coronary Stenosis/blood , Coronary Stenosis/physiopathology , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Coronary Vessels/surgery , Disease Models, Animal , L-Selectin/blood , Lipopolysaccharide Receptors/blood , Monocytes/metabolism , Myocardial Infarction/blood , Myocardial Infarction/physiopathology , Myocardium/metabolism , Neovascularization, Physiologic , Phenotype , Rabbits , Regeneration , Time FactorsABSTRACT
Wide attention for the appropriateness of coronary stenting in stable ischaemic heart disease (IHD) has increased interest in coronary physiology to guide decision making. For many, coronary physiology equals the measurement of coronary pressure to calculate the fractional flow reserve (FFR). While accumulating evidence supports the contention that FFR-guided revascularization is superior to revascularization based on coronary angiography, it is frequently overlooked that FFR is a coronary pressure-derived estimate of coronary flow impairment. It is not the same as the direct measures of coronary flow from which it was derived, and which are critical determinants of myocardial ischaemia. This review describes why coronary flow is physiologically and clinically more important than coronary pressure, details the resulting limitations and clinical consequences of FFR-guided clinical decision making, describes the scientific consequences of using FFR as a gold standard reference test, and discusses the potential of coronary flow to improve risk stratification and decision making in IHD.
Subject(s)
Coronary Circulation/physiology , Myocardial Ischemia/physiopathology , Blood Flow Velocity/physiology , Blood Pressure/physiology , Clinical Decision-Making , Coronary Stenosis/diagnosis , Coronary Stenosis/physiopathology , Fractional Flow Reserve, Myocardial/physiology , Humans , Microcirculation/physiology , Myocardial Ischemia/diagnosis , Myocardial Revascularization/statistics & numerical data , Patient SelectionABSTRACT
Particle skimming is a phenomenon where particles suspended in fluid flowing through vessels distribute disproportionately to bulk fluid volume at junctions. Microspheres are considered a gold standard of intra-organ perfusion measurements and are used widely in studies of flow distribution and quantification. It has previously been hypothesised that skimming at arterial junctions is responsible for a systematic over-estimation of myocardial perfusion from microspheres at the subendocardium. Our objective is to integrate coronary arterial structure and microsphere distribution, imaged at high resolution, to test the hypothesis of microsphere skimming in a porcine left coronary arterial (LCA) network. A detailed network was reconstructed from cryomicrotome imaging data and a Poiseuille flow model was used to simulate flow. A statistical approach using Clopper-Pearson confidence intervals was applied to determine the prevalence of skimming at bifurcations in the LCA. Results reveal that microsphere skimming is most prevalent at bifurcations in the larger coronary arteries, namely the epicardial and transmural arteries. Bifurcations at which skimming was identified have significantly more asymmetric branching parameters. This finding suggests that when using thin transmural segments to quantify flow from microspheres, a skimming-related deposition bias may result in underestimation of perfusion in the subepicardium, and overestimation in the subendocardium.
Subject(s)
Coronary Circulation , Coronary Vessels/physiology , Fluorescent Dyes/administration & dosage , Hemodynamics , Perfusion Imaging , Replica Techniques , Animals , Blood Flow Velocity , Computer Simulation , Coronary Vessels/anatomy & histology , Isolated Heart Preparation , Magnetic Resonance Imaging , Microspheres , Models, Anatomic , Models, Cardiovascular , Perfusion Imaging/methods , Predictive Value of Tests , Regional Blood Flow , Reproducibility of Results , SwineABSTRACT
Cellular imaging modalities are important for revealing the behavior and role of monocytes in response to neovascularization progression in coronary artery disease. In this study we aimed to develop methods for high-resolution three-dimensional (3D) imaging and quantification of monocytes relative to the entire coronary artery network using a novel episcopic imaging modality. In a series of ex vivo experiments, human umbilical vein endothelial cells and CD14+ monocytes were labeled with fluorescent live cell tracker probes and infused into the coronary artery network of excised rat hearts by a Langendorff perfusion method. Coronary arteries were subsequently infused with fluorescent vascular cast material and processed with an imaging cryomicrotome, whereby each heart was consecutively cut (5 µm slice thickness) and block face imaged at appropriate excitation and emission wavelengths. The resulting image stacks yielded 3D reconstructions of the vascular network and the location of cells administered. Successful detection and quantification of single cells and cell clusters were achieved relative to the coronary network using customized particle detection software. These methods were then applied to an in vivo rabbit model of chronic myocardial ischemia in which autologous monocytes were isolated from peripheral blood, labeled with a fluorescent live cell tracker probe and re-infused into the host animal. The processed 3D image stacks revealed homing of monocytes to the ischemic myocardial tissue. Monocytes detected in the ischemic tissue were predominantly concentrated in the mid-myocardium. Vessel segmentation identified coronary collateral connections relative to monocyte localization. This study established a novel imaging platform to efficiently determine the localization of monocytes in relation to the coronary microvascular network. These techniques are invaluable for investigating the role of monocyte populations in the progression of coronary neovascularization in animal models of chronic and sub-acute myocardial ischemia.
Subject(s)
Coronary Vessels/immunology , Monocytes/physiology , Myocardial Ischemia/immunology , Animals , Cell Movement , Cells, Cultured , Coronary Vessels/pathology , Frozen Sections , Human Umbilical Vein Endothelial Cells/physiology , Humans , Male , Microscopy, Fluorescence , Myocardial Ischemia/pathology , Rabbits , Rats, WistarABSTRACT
Functional collateral vessels often stem from outward remodelling of pre-existing connections between perfusion territories. Knowledge of the distribution and morphology of innate collateral connections may help in identifying myocardial areas with protection against risk for ischaemia. The coronary network of six healthy canine hearts was investigated with an imaging cryomicrotome. Innate collateral connections ranged from 286 to 1015 µm in diameter. Left ventricular collateral density (number per gram of tissue) was about five in the subendocardium vs. 2.5 in the mid-myocardium (P < 0.01) and 1.3 in the epicardium (P < 0.01). Subendocardial collateral connections were oriented parallel to the long axis of the heart. For the major coronary arteries, five times more intracoronary than intercoronary connections were found, while their median diameter and interquartile range were not significantly different, at 96.1 (16.9) vs. 94.7 (18.9) µm. Collateral vessels connecting crowns from sister branches from a stem are denoted intercrown connections and those within crowns intracrown connections. The number of intercrown connections was related to the mean tissue weight of the crowns (y = 0.73x - 0.33, r2 = 0.85, P < 0.0001). This relation was likewise found to describe intercoronary connections. The median collateral diameter and length were independent of the tissue volumes bridged. We conclude that connectivity and morphology of the innate collateral network are distributed with no preference for intra- or intercrown connections, independent of stem diameter, including epicardial arteries. This renders all sites of the myocardium equally protected in case of coronary artery disease. The orientation of subendocardial collateral vessels indicates the longitudinal direction of subendocardial collateral flow.
Subject(s)
Collateral Circulation , Coronary Circulation , Coronary Vessels/anatomy & histology , Endocardium/anatomy & histology , Heart Ventricles/anatomy & histology , Models, Anatomic , Models, Cardiovascular , Animals , Dogs , In Vitro TechniquesABSTRACT
Wave intensity analysis and wave separation are powerful tools for interrogating coronary, myocardial and microvascular physiology. Wave speed is integral to these calculations and is usually estimated by the single-point technique (SPc), a feasible but as yet unvalidated approach in coronary vessels. We aimed to directly measure wave speed in human coronary arteries and assess the impact of adenosine and nitrate administration. In 14 patients, the transit time Δt between two pressure signals was measured in angiographically normal coronary arteries using a microcatheter equipped with two high-fidelity pressure sensors located Δs = 5 cm apart. Simultaneously, intracoronary pressure and flow velocity were measured with a dual-sensor wire to derive SPc. Actual wave speed was calculated as DNc = Δs/Δt. Hemodynamic signals were recorded at baseline and during adenosine-induced hyperemia, before and after nitroglycerin administration. The energy of separated wave intensity components was assessed using SPc and DNc. At baseline, DNc equaled SPc (15.9 ± 1.8 vs. 16.6 ± 1.5 m/s). Adenosine-induced hyperemia lowered SPc by 40 % (p < 0.005), while DNc remained unchanged, leading to marked differences in respective separated wave energies. Nitroglycerin did not affect DNc, whereas SPc transiently fell to 12.0 ± 1.2 m/s (p < 0.02). Human coronary wave speed is reliably estimated by SPc under resting conditions but not during adenosine-induced vasodilation. Since coronary wave speed is unaffected by microvascular dilation, the SPc estimate at rest can serve as surrogate for separating wave intensity signals obtained during hyperemia, thus greatly extending the scope of WIA to study coronary physiology in humans.
Subject(s)
Coronary Vessels/physiology , Microcirculation/physiology , Models, Cardiovascular , Pulse Wave Analysis/methods , Vasodilation/physiology , Adenosine/administration & dosage , Aged , Angina, Stable/physiopathology , Angina, Stable/therapy , Coronary Vessels/drug effects , Female , Hemodynamics/drug effects , Hemodynamics/physiology , Humans , Hyperemia/chemically induced , Hyperemia/physiopathology , Male , Microcirculation/drug effects , Middle Aged , Nitroglycerin/administration & dosage , Vascular Resistance/drug effects , Vascular Resistance/physiology , Vasodilation/drug effects , Vasodilator Agents/administration & dosageABSTRACT
OBJECTIVE: The role of combined FFR/CFR measurements in decision-making on coronary revascularization remains unclear. DEFINE-FLOW prospectively assessed the relationship of FFR/CFR agreement with 2-year major adverse cardiac event (MACE) and target vessel failure (TVF) rates, and uniquely included core-laboratory analysis of all pressure and flow tracings. We aimed to document the impact of core-laboratory analysis on lesion classification, and the relationship between core-laboratory fractional flow reserve (FFR) and coronary flow reserve (CFR) values with clinical outcomes and angina burden during follow-up. METHODS: In 398 vessels (348 patients) considered for intervention, ≥1 coronary pressure/flow tracing was approved by the core-laboratory. Revascularization was performed only when both FFR(≤0.80) and CFR(<2.0) were abnormal, all others were treated medically. RESULTS: MACE was lowest for concordant normal FFR/CFR, but was not significantly different compared with either discordant group (low FFR/normal CFR: HR:1.63; 95%CI:0.61-4.40; P = 0.33; normal FFR/low CFR: HR:1.81; 95%CI:0.66-4.98; P = 0.25). Moreover, MACE did not differ between discordant groups treated medically and the concordant abnormal group undergoing revascularization (normal FFR/low CFR: HR:0.63; 95%CI:0.23-1.73;P = 0.37; normal FFR/low CFR: HR:0.70; 95%CI:0.22-2.21;P = 0.54). Similar findings applied to TVF. CONCLUSIONS: Patients with concordantly normal FFR/CFR have very low 2-year MACE and TVF rates. Throughout follow-up, there were no differences in event rates between patients in whom revascularization was deferred due to preserved CFR despite reduced FFR, and those in whom PCI was performed due to concordantly low FFR and CFR. These findings question the need for routine revascularization in vessels showing low FFR but preserved CFR. CLINICAL TRIAL REGISTRATION: http://ClinicalTrials.govNCT02328820.
Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Percutaneous Coronary Intervention , Humans , Coronary Angiography , Treatment Outcome , Coronary Artery Disease/diagnosis , Coronary Artery Disease/therapyABSTRACT
Recent technological advancements in the area of intracoronary physiology, as well as non-invasive contrast perfusion imaging, allow to make clinical decisions with respect to percutaneous coronary interventions and to identify microcirculatory coronary pathophysiology. The basic characteristics of coronary hemodynamics, as described by pressure-flow relations in the normal and diseased heart, need to be understood for a proper interpretation of these physiological measurements. Especially the hyperemic coronary pressure-flow relation, as well as the influence of cardiac function on it, bears great clinical significance. The interaction of a coronary stenosis with the coronary pressure-flow relation can be understood from the stenosis pressure drop-flow velocity relationship. Based on these relationships the clinically applied concepts of coronary flow velocity reserve, fractional flow reserve, stenosis resistance and microvascular resistance are discussed. Attention is further paid to the heterogeneous nature of myocardial perfusion, the vulnerability of the subendocardium and the role of collateral flow on hyperemic coronary pressure-flow relations. This article is part of a Special Issue entitled "Coronary Blood Flow".
Subject(s)
Coronary Circulation/physiology , Blood Flow Velocity/physiology , Coronary Stenosis/physiopathology , Hemodynamics/physiology , HumansABSTRACT
Our aim was to investigate the effect of altered cardiac-coronary interaction during the Valsalva manoeuvre (VM) on coronary wave intensity and the response of coronary microvascular resistance. In 13 patients, left ventricular (P(LV)) and aortic pressure were measured during catheterization, together with intracoronary pressure and blood flow velocity (U) via a dual-sensor guide wire advanced into an angiographically normal coronary artery. Signals were analysed for the following phases of VM: baseline (B1), onset of strain (S1), sustained strain (S2), onset of release (R1), maximal response during recovery (R2), and baseline after VM. The immediate effects of VM were most evident from diastolic P(LV) (LVDP), which increased from 11.0 ± 2.3 to 36.4 ± 2.7 mmHg between B1 and S1 and fell from 28.3 ± 3.4 to 8.3 ± 1.9 mmHg between S2 and R1. Wave intensities and rate pressure product (RPP) were only minimally affected at these transient phases, but coronary wave energies decreased by about 50% and RPP by 38% from S1 to S2, together with a 30% depression of LVdP/dt. All signals were restored to baseline values during the recovery. U did not vary significantly throughout the VM. Despite the depressed cardiac performance during VM strain, microvascular resistance, calculated with LVDP as backpressure, decreased by 31% from B1 to S2, whereas an increase via metabolically induced vasoconstriction was expected. Since coronary U remained essentially constant despite the marked reduction in oxygen consumption, microvascular vasoconstriction must have been compensated by a decrease in the contraction-mediated impediment on coronary blood flow, as confirmed by the reduced coronary wave energies.
Subject(s)
Coronary Circulation/physiology , Heart/physiology , Valsalva Maneuver , Vascular Resistance/physiology , Aged , Blood Flow Velocity , Blood Pressure , Female , Heart Rate , Humans , Male , Middle AgedABSTRACT
Depending on stenosis severity, collateral flow can be a confounding factor in the determination of coronary hyperemic microvascular resistance (HMR). Under certain assumptions, the calculation of HMR can be corrected for collateral flow by incorporating the wedge pressure (P(w)) in the calculation. However, although P(w) > 25 mmHg is indicative of collateral flow, P(w) does in part also reflect myocardial wall stress neglected in the assumptions. Therefore, the aim of this study was to establish whether adjusting HMR by P(w) is pertinent for a diagnostically relevant range of stenosis severities as expressed by fractional flow reserve (FFR). Accordingly, intracoronary pressure and Doppler flow velocity were measured a total of 95 times in 29 patients distal to a coronary stenosis before and after stepwise percutaneous coronary intervention. HMR was calculated without (HMR) and with P(w)-based adjustment for collateral flow (HMR(C)). FFR ranged from 0.3 to 1. HMR varied between 1 and 5 and HMR(C) between 0.5 and 4.2 mmHg·cm(-1)·s. HMR was about 37% higher than HMR(C) for stenoses with FFR < 0.6, but for FFR > 0.8, the relative difference was reduced to 4.4 ± 3.4%. In the diagnostically relevant range of FFR between 0.6 and 0.8, this difference was 16.5 ± 10.4%. In conclusion, P(w)-based adjustment likely overestimates the effect of potential collateral flow and is not needed for the assessment of coronary HMR in the presence of a flow-limiting stenosis characterized by FFR between 0.6 and 0.8 or for nonsignificant lesions.
Subject(s)
Collateral Circulation , Coronary Circulation , Coronary Stenosis/diagnosis , Coronary Stenosis/physiopathology , Microcirculation , Aged , Angioplasty, Balloon, Coronary , Cardiac Catheterization , Coronary Stenosis/therapy , Echocardiography, Doppler , Electrocardiography , Female , Fractional Flow Reserve, Myocardial , Humans , Hyperemia/physiopathology , Male , Middle Aged , Models, Cardiovascular , Predictive Value of Tests , Pulmonary Wedge Pressure , Severity of Illness Index , Treatment OutcomeABSTRACT
BACKGROUND: Myocardial reperfusion is frequently suboptimal after ST-segment elevation myocardial infarction (STEMI) treated by primary percutaneous coronary intervention (PCI). Using a balloon-tipped catheter positioned in the coronary sinus (CS), pressure-controlled intermittent coronary sinus occlusion (PICSO) results in an intermittent obstruction of coronary venous outflow of the left anterior descending artery (LAD), and may improve myocardial perfusion by augmenting redistribution of blood to the border zone of ischemic myocardium. We sought to document the intracoronary hemodynamic effects of PICSO during PCI. METHODS: We included 15 patients with stable angina scheduled for PCI of the LAD. Balloon occlusion of the LAD was performed twice, once with and once without PICSO and lasting maximally 3 minutes each, to document the effect of PICSO on CS pressure and LAD wedge pressure. RESULTS: Catheter delivery was successful in all patients. The study protocol could not be conducted in 5 patients due to initial calibration difficulties (n = 3), a pressure wire problem (n = 1), and a vagal response at the start of the procedure (n = 1). In the remaining 10 patients, CS occlusion caused a marked increase in mean CS pressure (4.1 ± 7.3 mmHg vs. 22.0 ± 12.6 mmHg; P < 0.001) and CS pulse pressure (4.3 ± 0.8 mmHg vs. 36.1 ± 6.3 mmHg; P < 0.001). Concomitantly, mean distal LAD wedge pressure and wedge pulse pressure increased (32.4 ± 12.2 mmHg vs. 35.5 ± 12.6 mmHg; P < 0.001 and 39.1 ± 27.2 mmHg vs. 45.9 ± 26.0 mmHg; P < 0.001, respectively). At 30 day follow-up, no device-related events occurred. CONCLUSIONS: PICSO safely augments CS pressure, thereby increasing LAD coronary wedge pressure. These findings support further evaluation of PICSO in the setting of STEMI.
Subject(s)
Balloon Occlusion , Blood Pressure/physiology , Coronary Artery Disease/therapy , Coronary Circulation/physiology , Coronary Sinus/physiology , Myocardial Reperfusion/methods , Angioplasty, Balloon, Coronary , Cardiac Catheterization , Coronary Vessels , Female , Humans , Male , Middle Aged , Prospective StudiesABSTRACT
In the current paradigm on coronary collateral development, it is assumed that these vessels develop consequentially from increased fluid shear stress (FSS) through preexisting collateral arteries. The increased FSS follows from an increase in pressure gradient between the region at risk and well-perfused surroundings. The objective of this study was to test the hypothesis that, in the heart, collateral connections can form in the absence of an increased FFS and consequentially at any depth and region within the ventricular wall. In Yorkshire pigs, gradual left circumflex coronary artery occlusion was obtained over 6 wk by an ameroid constrictor, whereas the control group underwent a sham operation. Hearts were harvested and subsequently processed in an imaging cryomicrotome, resulting in 40-µm voxel resolution three-dimensional reconstructions of the intramural vascular vessels. Dedicated software segmented the intramural vessels and all continuous vascular pathways containing a collateral connection. In the ameroid group, 192 collaterals, 22-1,049 µm in diameter, were detected with 62% within the subendocardium. Sixty percent of collaterals bridged from the left anterior descending artery to left circumflex coronary artery. A novel result is that 25% (n = 48) of smaller-radius collaterals (P = 0.047) connected with both origin and terminus in the nontarget area where perfusion was assumed uncompromised. In the porcine heart, collateral vessels develop not only in ischemic border zones with increased FSS but also away from such border zones where increased FSS is unlikely. The majority of collaterals were located at the subendocardium, corresponding to the region with highest prevalence for ischemia.
Subject(s)
Blood Pressure/physiology , Collateral Circulation/physiology , Coronary Vessels/growth & development , Myocardial Ischemia/physiopathology , Neovascularization, Physiologic/physiology , Algorithms , Animals , Coronary Vessels/physiology , Male , Models, Animal , SwineABSTRACT
PURPOSE: We quantified temporal changes in vascular structure and blood flow after cryosurgery of the porcine kidney in vivo. MATERIALS AND METHODS: We studied 5 groups of 4 kidneys each with a survival time of 20 minutes, 4 hours, 2 days, and 1 and 2 weeks after cryoablation, respectively. Before harvesting the kidneys, fluorescently labeled microspheres were administrated in the descending aorta. After harvest the kidney and its vasculature were casted with fluorescently dyed elastomer, frozen and processed in an imaging cryomicrotome to reveal the 3-dimensional arterial branching structure and microsphere distribution. In regions of interest vessels were segmented by image analysis software and histograms were constructed to reveal the total summed vessel length as a function of diameter. A characteristic diameter of the ablated area was measured. RESULTS: The 20-minute survival group histograms showed a significant shift of the peak to larger diameters (p<0.002), indicating that smaller vessels were destroyed. Microsphere density was decreased to 2% in the ablated region but not in the nonablated border zone, depending on the remaining crater crossing larger vessels. After 2 weeks neither vessels nor microspheres were left in the ablated area, which had shrunk by about 40% in diameter. Study limitations are the lack of histological confirmation and the use of normal rather than cancerous tissue. CONCLUSIONS: Larger vessels remain patent just after ablation and transport blood to the border of the ablation crater but perfusion within the crater is halted instantly. Characteristic crater diameter increases initially but decreases thereafter. Destruction of vessels and tissue is complete 2 weeks after cryoablation.
Subject(s)
Cryosurgery , Kidney/blood supply , Kidney/surgery , Renal Artery/anatomy & histology , Renal Artery/physiology , Animals , Regional Blood Flow , SwineABSTRACT
OBJECTIVE: Accurate, high-resolution imaging of articular cartilage thickness is an important clinical challenge in patients with osteoarthritis, especially in small joints. In this study, computed tomography (CT) mediated catheter-based optical coherence tomography (OCT) was utilized to create a digital reconstruction of the articular surface of the trapeziometacarpal (TMC) joint and to assess cartilage thickness in comparison to cryomicrotome data. DESIGN: Using needle-based introduction of the OCT probe, the articular surface of the TMC joint of 5 cadaver wrists was scanned in different probe positions with matching CT scans to record the intraarticular probe trajectory. Subsequently and based on the acquired CT data, 3-dimensional realignment of the OCT data to the curved intraarticular trajectory was performed for all probe positions. The scanned TMC joints were processed using a cryomicrotome imaging system. Finally, cartilage thickness measurements between OCT and cryomicrotome data were compared. RESULTS: Successful visualization of TMC articular cartilage was performed using OCT. The CT-mediated registration yielded a digital reconstruction of the articular surface on which thickness measurements could be performed. A near-perfect agreement between OCT and cryomicrotome thickness measurements was found (r2 = 0.989). CONCLUSION: The proposed approach enables 3D reconstruction of the TMC articular surface with subsequent accurate cartilage thickness measurements, encouraging the development of intraarticular cartilage OCT for future (clinical) application.
Subject(s)
Cartilage Diseases , Cartilage, Articular , Cadaver , Cartilage, Articular/diagnostic imaging , Humans , Tomography, Optical Coherence/methods , Tomography, X-Ray ComputedABSTRACT
Vascular endothelium is covered with an extensive mesh of glycocalyx constituents, which acts like an effective barrier up to several micrometers thick that shields the luminal surface of the vasculature from direct exposure to flowing blood. Many studies report that various enzymatic and pharmaceutical challenges are able to increase glycocalyx porosity, resulting in farther permeation of plasma macromolecules and greater access of red blood cells into glycocalyx domain. Attenuation of glycocalyx barrier properties therefore potentially increases the amount of blood that effectively occupies available microvascular volume. We tested in the present study whether attenuation of coronary glycocalyx barrier properties actually increases coronary blood volume and whether such changes would be noticeable during measurements of coronary flow reserve using adenosine. In anesthetized goats (n = 6) with cannulated left main coronary artery that were perfused under controlled pressure, coronary blood volume was measured via the indicator-dilution technique using high-molecular-weight (2,000 kDa) dextrans as plasma tracer and labeled red blood cells as red blood cell tracer. Coronary blood volume was determined at baseline and during intracoronary infusion of adenosine causing maximal vasodilation (0.2-0.6 mg.kg(-1).h(-1)) before and after intracoronary hyaluronidase treatment (170,000 units) of the glycocalyx. With an intact glycocalyx, coronary blood volume was 18.9 +/- 1.1 ml/100 g heart tissue at baseline, which increased to 26.3 +/- 2.7 ml/100 g after hyaluronidase treatment of the coronary glycocalyx. Maximal vasodilation by administration of adenosine further increased coronary blood volume to 33.9 +/- 6.8 ml/100 g, a value not different from the maximal coronary blood volume of 33.2 +/- 5.3 ml/100 g obtained by administration of adenosine in the absence of hyaluronidase treatment. Adenosine-induced increases in coronary conductance were not affected by hyaluronidase treatment. We conclude that acute attenuation of glycocalyx barrier properties increases coronary blood volume by approximately 40%, which is of similar magnitude as additional changes in coronary blood volume during subsequent maximal vasodilation with adenosine. Furthermore, maximal coronary blood volume following administration of adenosine was similar with and without prior hyaluronidase degradation of the glycocalyx, suggesting that adenosine and hyaluronidase potentially increase glycocalyx porosity to a similar extent. Hyaluronidase-mediated changes in coronary blood volume did not affect baseline and adenosine-induced increases in coronary conductance, demonstrating that measurements of coronary flow reserve are insufficient to detect impairment of coronary blood volume recruitment in conditions of damaged glycocalyx.
Subject(s)
Blood Volume/physiology , Coronary Vessels/physiology , Glycocalyx/physiology , Regional Blood Flow/physiology , Adenosine/pharmacology , Animals , Cell Membrane/physiology , Coronary Vessels/drug effects , Female , Glycocalyx/drug effects , Goats , Hyaluronoglucosaminidase/pharmacology , Models, Animal , Models, Biological , Vasodilation/drug effects , Vasodilator Agents/pharmacologyABSTRACT
In the failing myocardium a subendocardial plexus can develop. Detection of the presence or function, however, of such a plexus does not form part of the present diagnostic spectrum for heart failure. This may now change as new methods for high-resolution imaging of myocardial perfusion distribution are being developed. A severely hypertrophic heart was harvested during transplantation and analyzed for morphology of the intramural coronary arterial vasculature. The heart only had one coronary ostium, and the main branches of the coronary artery were cannulated. A fluorescent casting material was infused that was allowed to harden under physiological pressure. The entire heart was frozen and placed in a novel imaging cryomicrotome and sequentially cut in 25-microm slices. High-resolution images of each cutting plane were acquired, allowing a detailed three-dimensional reconstruction of the arterial vasculature. The epicardial layer of the free wall demonstrated a normal vasculature with penetrating branching arteries. The endocardial layer and the septum revealed a highly interconnected vascular plexus with large vessels oriented parallel to the apicobasal axis. An extensive endocardial network with collaterals was detected, forming connections between the main epicardial branches. We conclude that an outward remodeling of transmural vessels did not prevent the generation and growth of subendocardial conduit arteries. The orientation and vascular volume in the plexus provides an opportunity for detection by novel techniques of MRI contrast imaging currently developed. Knowledge of the effect on perfusion studies is required to prevent a misinterpretation of subendocardial perfusion images in heart failure.