Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Cell ; 185(19): 3588-3602.e21, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36113429

ABSTRACT

The current dogma of RNA-mediated innate immunity is that sensing of immunostimulatory RNA ligands is sufficient for the activation of intracellular sensors and induction of interferon (IFN) responses. Here, we report that actin cytoskeleton disturbance primes RIG-I-like receptor (RLR) activation. Actin cytoskeleton rearrangement induced by virus infection or commonly used reagents to intracellularly deliver RNA triggers the relocalization of PPP1R12C, a regulatory subunit of the protein phosphatase-1 (PP1), from filamentous actin to cytoplasmic RLRs. This allows dephosphorylation-mediated RLR priming and, together with the RNA agonist, induces effective RLR downstream signaling. Genetic ablation of PPP1R12C impairs antiviral responses and enhances susceptibility to infection with several RNA viruses including SARS-CoV-2, influenza virus, picornavirus, and vesicular stomatitis virus. Our work identifies actin cytoskeleton disturbance as a priming signal for RLR-mediated innate immunity, which may open avenues for antiviral or adjuvant design.


Subject(s)
Actins , COVID-19 , Actin Cytoskeleton , Antiviral Agents , Humans , Interferons , Ligands , Protein Phosphatase 1 , RNA , RNA Helicases , Receptors, Retinoic Acid/metabolism , SARS-CoV-2
2.
Nat Immunol ; 19(1): 53-62, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29180807

ABSTRACT

The sensor RIG-I detects double-stranded RNA derived from RNA viruses. Although RIG-I is also known to have a role in the antiviral response to DNA viruses, physiological RNA species recognized by RIG-I during infection with a DNA virus are largely unknown. Using next-generation RNA sequencing (RNAseq), we found that host-derived RNAs, most prominently 5S ribosomal RNA pseudogene 141 (RNA5SP141), bound to RIG-I during infection with herpes simplex virus 1 (HSV-1). Infection with HSV-1 induced relocalization of RNA5SP141 from the nucleus to the cytoplasm, and virus-induced shutoff of host protein synthesis downregulated the abundance of RNA5SP141-interacting proteins, which allowed RNA5SP141 to bind RIG-I and induce the expression of type I interferons. Silencing of RNA5SP141 strongly dampened the antiviral response to HSV-1 and the related virus Epstein-Barr virus (EBV), as well as influenza A virus (IAV). Our findings reveal that antiviral immunity can be triggered by host RNAs that are unshielded following depletion of their respective binding proteins by the virus.


Subject(s)
DEAD Box Protein 58/immunology , Herpesvirus 1, Human/immunology , Immunity/immunology , RNA, Ribosomal, 5S/immunology , Animals , Cells, Cultured , Chlorocebus aethiops , DEAD Box Protein 58/metabolism , Gene Expression/immunology , HEK293 Cells , Herpesvirus 1, Human/physiology , Host-Pathogen Interactions/immunology , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Interferon Type I/metabolism , Mice, Knockout , Pseudogenes/genetics , RNA Transport/immunology , RNA, Ribosomal, 5S/genetics , RNA, Ribosomal, 5S/metabolism , Receptors, Immunologic , Vero Cells
3.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431697

ABSTRACT

GPR15 is a G protein-coupled receptor (GPCR) proposed to play a role in mucosal immunity that also serves as a major entry cofactor for HIV-2 and simian immunodeficiency virus (SIV). To discover novel endogenous GPR15 ligands, we screened a hemofiltrate (HF)-derived peptide library for inhibitors of GPR15-mediated SIV infection. Our approach identified a C-terminal fragment of cystatin C (CysC95-146) that specifically inhibits GPR15-dependent HIV-1, HIV-2, and SIV infection. In contrast, GPR15L, the chemokine ligand of GPR15, failed to inhibit virus infection. We found that cystatin C fragments preventing GPR15-mediated viral entry do not interfere with GPR15L signaling and are generated by proteases activated at sites of inflammation. The antiretroviral activity of CysC95-146 was confirmed in primary CD4+ T cells and is conserved in simian hosts of SIV infection. Thus, we identified a potent endogenous inhibitor of GPR15-mediated HIV and SIV infection that does not interfere with the physiological function of this GPCR.


Subject(s)
Cystatin C/genetics , HIV Infections/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/genetics , Simian Acquired Immunodeficiency Syndrome/genetics , Animals , HIV Infections/pathology , HIV Infections/virology , HIV-1/genetics , HIV-1/pathogenicity , Humans , Receptors, Virus/genetics , Signal Transduction/genetics , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/pathogenicity , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Virus Internalization
4.
J Virol ; 96(6): e0207721, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35225672

ABSTRACT

Emerging strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, that show increased transmission fitness and/or immune evasion are classified as "variants of concern" (VOCs). Recently, a SARS-CoV-2 variant first identified in November 2021 in South Africa has been recognized as a fifth VOC, termed "Omicron." What makes this VOC so alarming is the high number of changes, especially in the viral Spike protein, and accumulating evidence for increased transmission efficiency and escape from neutralizing antibodies. In an amazingly short time, the Omicron VOC has outcompeted the previously dominating Delta VOC. However, it seems that the Omicron VOC is overall less pathogenic than other SARS-CoV-2 VOCs. Here, we provide an overview of the mutations in the Omicron genome and the resulting changes in viral proteins compared to other SARS-CoV-2 strains and discuss their potential functional consequences.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/immunology , COVID-19/virology , Genome, Viral , Humans , Immune Evasion , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism
5.
J Virol ; 96(11): e0059422, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35543509

ABSTRACT

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human lung cells, cardiomyocytes, and gut organoids. To date, several "variants of concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the five current SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, and Omicron) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had modest effects, while knockdown of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than 4 orders of magnitude. In addition, an antibody directed against the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells, thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominant Omicron variant. IMPORTANCE Recent data indicate that SARS-CoV-2 requires endogenously expressed IFITM proteins for efficient infection. However, the results were obtained with an early SARS-CoV-2 isolate. Thus, it remained to be determined whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that outcompeted the original strains in the meantime. This includes the Omicron VOC, which currently dominates the pandemic. Here, we show that depletion of endogenous IFITM2 expression almost entirely prevents productive infection of Alpha, Beta, Gamma, Delta, and Omicron SARS-CoV-2 VOCs in human lung cells. In addition, an antibody targeting the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs, including the currently dominant Omicron variant, are strongly dependent on IFITM2 for efficient replication, suggesting a key proviral role of IFITMs in viral transmission and pathogenicity.


Subject(s)
Lung , Membrane Proteins , SARS-CoV-2 , Virus Replication , COVID-19/virology , Cell Line, Tumor , Humans , Lung/virology , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virus Internalization
6.
Eur J Nucl Med Mol Imaging ; 50(10): 3050-3061, 2023 08.
Article in English | MEDLINE | ID: mdl-37261473

ABSTRACT

PURPOSE: Fibroblast activation protein-α (FAP)-targeting radioligands have recently demonstrated high diagnostic potential. However, their therapeutic value is impaired by the short tumor residence time. Several strategies have been tested to overcome this limitation, but a head-to-head comparison has never been done. With the aim to identify strengths and limitations of the suggested strategies, we compared the monomer FAPI-46 versus (a) its dimer (FAPI-46-F1D), (b) two albumin binders conjugates (FAPI-46-Ibu (ibuprofen) and FAPI-46-EB (Evans Blue)), and (c) cyclic peptide FAP-2286. METHODS: 177Lu-labeled ligands were evaluated in vitro in cell lines with low (HT-1080.hFAP) and high (HEK-293.hFAP) humanFAP expression. SPECT/CT imaging and biodistribution studies were conducted in HT-1080.hFAP and HEK-293.hFAP xenografts. The areas under the curve (AUC) of the tumor uptake and tumor-to-critical-organs ratios and the absorbed doses were estimated. RESULTS: Radioligands showed IC50 in the picomolar range. Striking differences were observed in vivo regarding tumor uptake, residence, specificity, and total body distribution. All [177Lu]Lu-FAPI-46-based radioligands showed similar uptake between the two tumor models. [177Lu]Lu-FAP-2286 showed higher uptake in HEK-293.hFAP and the least background. The AUC of the tumor uptake and absorbed dose was higher for [177Lu]Lu-FAPI-46-F1D and the two albumin binder conjugates, [177Lu]Lu-FAPI-46-Ibu and [177Lu]Lu-FAPI-46-EB, in HT1080.hFAP xenografts and for [177Lu]Lu-FAPI-46-EB and [177Lu]Lu-FAP-2286 in HEK293.hFAP xenografts. The tumor-to-critical-organs AUC values and the absorbed doses were in favor of [177Lu]Lu-FAP-2286, but tumor-to-kidneys. CONCLUSION: The study indicated dimerization and cyclic peptide structures as promising strategies for prolonging tumor residence time, sparing healthy tissues. Albumin binding strategy outcome depended on the albumin binding moiety. The peptide showed advantages in terms of tumor-to-background ratios, besides tumor-to-kidneys, but its tumor uptake was FAP expression-dependent.


Subject(s)
Albumins , Peptides , Humans , HEK293 Cells , Tissue Distribution , Cell Line, Tumor , Albumins/chemistry , Peptides, Cyclic , Positron Emission Tomography Computed Tomography , Gallium Radioisotopes
7.
Med Microbiol Immunol ; 212(2): 125-131, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35366686

ABSTRACT

The innate immune system is a powerful barrier against invading pathogens. Interferons (IFNs) are a major part of the cytokine-mediated anti-viral innate immune response. After recognition of a pathogen by immune sensors, signaling cascades are activated that culminate in the release of IFNs. These activate cells in an autocrine or paracrine fashion eventually setting cells in an anti-viral state via upregulation of hundreds of interferon-stimulated genes (ISGs). To evade the anti-viral effect of the IFN system, successful viruses like the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolved strategies to counteract both IFN induction and signaling. In fact, more than half of the about 30 proteins encoded by SARS-CoV-2 target the IFN system at multiple levels to escape IFN-mediated restriction. Here, we review recent insights into the molecular mechanisms used by SARS-CoV-2 proteins to suppress IFN production and the establishment of an anti-viral state.


Subject(s)
COVID-19 , Interferons , Humans , Interferons/genetics , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Immunity, Innate
8.
PLoS Pathog ; 16(8): e1008752, 2020 08.
Article in English | MEDLINE | ID: mdl-32760121

ABSTRACT

Members of the family of pyrin and HIN domain containing (PYHIN) proteins play an emerging role in innate immunity. While absent in melanoma 2 (AIM2) acts a cytosolic sensor of non-self DNA and plays a key role in inflammasome assembly, the γ-interferon-inducible protein 16 (IFI16) restricts retroviral gene expression by sequestering the transcription factor Sp1. Here, we show that the remaining two human PYHIN proteins, i.e. myeloid cell nuclear differentiation antigen (MNDA) and pyrin and HIN domain family member 1 (PYHIN1 or IFIX) share this antiretroviral function of IFI16. On average, knock-down of each of these three nuclear PYHIN proteins increased infectious HIV-1 yield from human macrophages by more than an order of magnitude. Similarly, knock-down of IFI16 strongly increased virus transcription and production in primary CD4+ T cells. The N-terminal pyrin domain (PYD) plus linker region containing a nuclear localization signal (NLS) were generally required and sufficient for Sp1 sequestration and anti-HIV-1 activity of IFI16, MNDA and PYHIN1. Replacement of the linker region of AIM2 by the NLS-containing linker of IFI16 resulted in a predominantly nuclear localization and conferred direct antiviral activity to AIM2 while attenuating its ability to form inflammasomes. The reverse change caused nuclear-to-cytoplasmic relocalization of IFI16 and impaired its antiretroviral activity but did not result in inflammasome assembly. We further show that the Zn-finger domain of Sp1 is critical for the interaction with IFI16 supporting that pyrin domains compete with DNA for Sp1 binding. Finally, we found that human PYHIN proteins also inhibit Hepatitis B virus and simian vacuolating virus 40 as well as the LINE-1 retrotransposon. Altogether, our data show that IFI16, PYHIN1 and MNDA restrict HIV-1 and other viral pathogens by interfering with Sp1-dependent gene expression and support an important role of nuclear PYHIN proteins in innate antiviral immunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Nucleus/metabolism , HIV Infections/prevention & control , HIV-1/immunology , Macrophages/immunology , Nuclear Proteins/metabolism , Sp1 Transcription Factor/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Nucleus/genetics , DNA, Viral/genetics , HEK293 Cells , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , HIV-1/genetics , HIV-1/isolation & purification , Hep G2 Cells , Humans , Immunity, Innate/immunology , Inflammasomes/genetics , Inflammasomes/immunology , Macrophages/metabolism , Macrophages/virology , Nuclear Proteins/genetics , Sp1 Transcription Factor/genetics , Virus Replication
9.
Nucleic Acids Res ; 48(19): 10890-10908, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33021676

ABSTRACT

Although endogenous retroviruses (ERVs) are known to harbor cis-regulatory elements, their role in modulating cellular immune responses remains poorly understood. Using an RNA-seq approach, we show that several members of the ERV9 lineage, particularly LTR12C elements, are activated upon HIV-1 infection of primary CD4+ T cells. Intriguingly, HIV-1-induced ERVs harboring transcription start sites are primarily found in the vicinity of immunity genes. For example, HIV-1 infection activates LTR12C elements upstream of the interferon-inducible genes GBP2 and GBP5 that encode for broad-spectrum antiviral factors. Reporter assays demonstrated that these LTR12C elements drive gene expression in primary CD4+ T cells. In line with this, HIV-1 infection triggered the expression of a unique GBP2 transcript variant by activating a cryptic transcription start site within LTR12C. Furthermore, stimulation with HIV-1-induced cytokines increased GBP2 and GBP5 expression in human cells, but not in macaque cells that naturally lack the GBP5 gene and the LTR12C element upstream of GBP2. Finally, our findings suggest that GBP2 and GBP5 have already been active against ancient viral pathogens as they suppress the maturation of the extinct retrovirus HERV-K (HML-2). In summary, our findings uncover how human cells can exploit remnants of once-infectious retroviruses to regulate antiviral gene expression.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Endogenous Retroviruses/genetics , Gene Expression Regulation/immunology , HIV Infections/genetics , Promoter Regions, Genetic , T-Lymphocyte Subsets/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , GTP-Binding Proteins/genetics , GTP-Binding Proteins/immunology , HEK293 Cells , HIV Infections/immunology , HIV-1 , Humans , Macaca mulatta , T-Lymphocyte Subsets/cytology
10.
PLoS Pathog ; 14(8): e1007269, 2018 08.
Article in English | MEDLINE | ID: mdl-30125328

ABSTRACT

SERINC5 is a host restriction factor that impairs infectivity of HIV-1 and other primate lentiviruses and is counteracted by the viral accessory protein Nef. However, the importance of SERINC5 antagonism for viral replication and cytopathicity remained unclear. Here, we show that the Nef protein of the highly divergent SIVcol lineage infecting mantled guerezas (Colobus guereza) is a potent antagonist of SERINC5, although it lacks the CD4, CD3 and CD28 down-modulation activities exerted by other primate lentiviral Nefs. In addition, SIVcol Nefs decrease CXCR4 cell surface expression, suppress TCR-induced actin remodeling, and counteract Colobus but not human tetherin. Unlike HIV-1 Nef proteins, SIVcol Nef induces efficient proteasomal degradation of SERINC5 and counteracts orthologs from highly divergent vertebrate species, such as Xenopus frogs and zebrafish. A single Y86F mutation disrupts SERINC5 and tetherin antagonism but not CXCR4 down-modulation by SIVcol Nef, while mutation of a C-proximal di-leucine motif has the opposite effect. Unexpectedly, the Y86F change in SIVcol Nef had little if any effect on viral replication and CD4+ T cell depletion in preactivated human CD4+ T cells and in ex vivo infected lymphoid tissue. However, SIVcol Nef increased virion infectivity up to 10-fold and moderately increased viral replication in resting peripheral blood mononuclear cells (PBMCs) that were first infected with HIV-1 and activated three or six days later. In conclusion, SIVcol Nef lacks several activities that are conserved in other primate lentiviruses and utilizes a distinct proteasome-dependent mechanism to counteract SERINC5. Our finding that evolutionarily distinct SIVcol Nefs show potent anti-SERINC5 activity supports a relevant role of SERINC5 antagonism for viral fitness in vivo. Our results further suggest this Nef function is particularly important for virion infectivity under conditions of limited CD4+ T cell activation.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Gene Products, nef/physiology , HIV-1/physiology , Lymphoid Tissue/virology , Membrane Proteins/metabolism , Virus Replication/genetics , Animals , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Colobus/virology , HEK293 Cells , Humans , Jurkat Cells , Membrane Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Simian Immunodeficiency Virus/genetics
11.
PLoS Pathog ; 10(4): e1004081, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24743923

ABSTRACT

RIG-I-like receptors (RLRs: RIG-I, MDA5 and LGP2) play a major role in the innate immune response against viral infections and detect patterns on viral RNA molecules that are typically absent from host RNA. Upon RNA binding, RLRs trigger a complex downstream signaling cascade resulting in the expression of type I interferons and proinflammatory cytokines. In the past decade extensive efforts were made to elucidate the nature of putative RLR ligands. In vitro and transfection studies identified 5'-triphosphate containing blunt-ended double-strand RNAs as potent RIG-I inducers and these findings were confirmed by next-generation sequencing of RIG-I associated RNAs from virus-infected cells. The nature of RNA ligands of MDA5 is less clear. Several studies suggest that double-stranded RNAs are the preferred agonists for the protein. However, the exact nature of physiological MDA5 ligands from virus-infected cells needs to be elucidated. In this work, we combine a crosslinking technique with next-generation sequencing in order to shed light on MDA5-associated RNAs from human cells infected with measles virus. Our findings suggest that RIG-I and MDA5 associate with AU-rich RNA species originating from the mRNA of the measles virus L gene. Corresponding sequences are poorer activators of ATP-hydrolysis by MDA5 in vitro, suggesting that they result in more stable MDA5 filaments. These data provide a possible model of how AU-rich sequences could activate type I interferon signaling.


Subject(s)
DEAD-box RNA Helicases/metabolism , Measles virus/metabolism , Measles/metabolism , RNA, Messenger/metabolism , RNA, Viral/metabolism , Viral Proteins/biosynthesis , Cell Line, Tumor , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , HEK293 Cells , Humans , Interferon-Induced Helicase, IFIH1 , Measles/genetics , Measles virus/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , Receptors, Immunologic , Viral Proteins/genetics
13.
Viruses ; 16(4)2024 03 25.
Article in English | MEDLINE | ID: mdl-38675843

ABSTRACT

Autophagy has emerged as an integral part of the antiviral innate immune defenses, targeting viruses or their components for lysosomal degradation. Thus, successful viruses, like pandemic human immunodeficiency virus 1 (HIV-1), evolved strategies to counteract or even exploit autophagy for efficient replication. Here, we provide an overview of the intricate interplay between autophagy and HIV-1. We discuss the impact of autophagy on HIV-1 replication and report in detail how HIV-1 manipulates autophagy in infected cells and beyond. We also highlight tissue and cell-type specifics in the interplay between autophagy and HIV-1. In addition, we weigh exogenous modulation of autophagy as a putative double-edged sword against HIV-1 and discuss potential implications for future antiretroviral therapy and curative approaches. Taken together, we consider both antiviral and proviral roles of autophagy to illustrate the ambivalent role of autophagy in HIV-1 pathogenesis and therapy.


Subject(s)
Autophagy , HIV Infections , HIV-1 , Humans , HIV Infections/virology , HIV Infections/immunology , HIV Infections/drug therapy , HIV-1/physiology , Host-Pathogen Interactions , Immunity, Innate , Virus Replication
14.
Nat Commun ; 15(1): 3813, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714682

ABSTRACT

Innate antiviral factors are essential for effective defense against viral pathogens. However, the identity of major restriction mechanisms remains elusive. Current approaches to discover antiviral factors usually focus on the initial steps of viral replication and are limited to a single round of infection. Here, we engineered libraries of >1500 replication-competent HIV-1 constructs each expressing a single gRNAs to target >500 cellular genes for virus-driven discovery of antiviral factors. Passaging in CD4+ T cells robustly enriched HIV-1 encoding sgRNAs against GRN, CIITA, EHMT2, CEACAM3, CC2D1B and RHOA by >50-fold. Using an HIV-1 library lacking the accessory nef gene, we identified IFI16 as a Nef target. Functional analyses in cell lines and primary CD4+ T cells support that the HIV-driven CRISPR screen identified restriction factors targeting virus entry, transcription, release and infectivity. Our HIV-guided CRISPR technique enables sensitive discovery of physiologically relevant cellular defense factors throughout the entire viral replication cycle.


Subject(s)
CD4-Positive T-Lymphocytes , HIV-1 , Virus Replication , nef Gene Products, Human Immunodeficiency Virus , Humans , HIV-1/genetics , HIV-1/physiology , Virus Replication/genetics , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , HEK293 Cells , CRISPR-Cas Systems , HIV Infections/virology , HIV Infections/genetics , HIV Infections/immunology , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Virus Internalization
15.
Nat Microbiol ; 9(4): 905-921, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528146

ABSTRACT

Some viruses are rarely transmitted orally or sexually despite their presence in saliva, breast milk, or semen. We previously identified that extracellular vesicles (EVs) in semen and saliva inhibit Zika virus infection. However, the antiviral spectrum and underlying mechanism remained unclear. Here we applied lipidomics and flow cytometry to show that these EVs expose phosphatidylserine (PS). By blocking PS receptors, targeted by Zika virus in the process of apoptotic mimicry, they interfere with viral attachment and entry. Consequently, physiological concentrations of EVs applied in vitro efficiently inhibited infection by apoptotic mimicry dengue, West Nile, Chikungunya, Ebola and vesicular stomatitis viruses, but not severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus 1, hepatitis C virus and herpesviruses that use other entry receptors. Our results identify the role of PS-rich EVs in body fluids in innate defence against infection via viral apoptotic mimicries, explaining why these viruses are primarily transmitted via PS-EV-deficient blood or blood-ingesting arthropods rather than direct human-to-human contact.


Subject(s)
Body Fluids , Extracellular Vesicles , Viruses , Zika Virus Infection , Zika Virus , Female , Humans , Phosphatidylserines , Virus Attachment
16.
J Virol ; 86(2): 796-805, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22072748

ABSTRACT

Transcriptional induction of beta interferon (IFN-ß) through pattern recognition receptors is a key event in the host defense against invading viruses. Infection of cells by paramyxoviruses, like measles virus (MV) (genus Morbillivirus), is sensed predominantly by the ubiquitous cytoplasmic helicase RIG-I, recognizing viral 5'-triphosphate RNAs, and to some degree by MDA5. While MDA5 activation is effectively prevented by the MV V protein, the viral mechanisms for inhibition of MDA5-independent induction of IFN-ß remained obscure. Here, we identify the 186-amino-acid MV C protein, which shuttles between the nucleus and the cytoplasm, as a major viral inhibitor of IFN-ß transcription in human cells. Activation of the transcription factor IRF3 by upstream kinases and nuclear import of activated IRF3 were not affected in the presence of C protein, suggesting a nuclear target. Notably, C proteins of wild-type MV isolates, which are poor IFN-ß inducers, were found to comprise a canonical nuclear localization signal (NLS), whereas the NLSs of all vaccine strains, irrespective of their origins, were mutated. Site-directed mutagenesis of the C proteins from an MV wild-type isolate and from the vaccine virus strain Schwarz confirmed a correlation of nuclear localization and inhibition of IFN-ß transcription. A functional NLS and efficient nuclear accumulation are therefore critical for MV C to retain its potential to downregulate IFN-ß induction. We suggest that a defect in efficient nuclear import of C protein contributes to attenuation of MV vaccine strains.


Subject(s)
Cell Nucleus/genetics , Down-Regulation , Interferon-beta/genetics , Measles virus/metabolism , Measles/genetics , Viral Proteins/metabolism , Amino Acid Sequence , Cell Line , Cell Nucleus/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Humans , Interferon-beta/metabolism , Measles/metabolism , Measles/virology , Measles virus/chemistry , Measles virus/genetics , Molecular Sequence Data , Protein Transport , Sequence Alignment , Transcription, Genetic , Viral Proteins/chemistry , Viral Proteins/genetics
17.
iScience ; 26(11): 108299, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026181

ABSTRACT

Additional mutations in the viral Spike protein helped the BA.2.12.1 and BA.4/5 SARS-CoV-2 Omicron subvariants to outcompete the parental BA.2 subvariant. Here, we determined the functional impact of mutations that newly emerged in the BA.2.12.1 (L452Q, S704L) and BA.4/5 (Δ69-70, L452R, F486V, R493Q) Spike proteins. Our results show that mutation of L452Q/R or F486V typically increases and R493Q or S704L impair BA.2 Spike-mediated infection. In combination, changes of Δ69-70, L452R, and F486V contribute to the higher infectiousness and fusogenicity of the BA.4/5 Spike. L452R/Q and F486V in Spike are mainly responsible for reduced sensitivity to neutralizing antibodies. However, the combined mutations are required for full infectivity, reduced TMPRSS2 dependency, and immune escape of BA.4/5 Spike. Thus, it is the specific combination of mutations in BA.4/5 Spike that allows increased functionality and immune evasion, which helps to explain the temporary dominance and increased pathogenicity of these Omicron subvariants.

18.
Autophagy ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37938186

ABSTRACT

Macroautophagy/autophagy is a tightly regulated cellular process integral to homeostasis and innate immunity. As such, dysregulation of autophagy is associated with cancer, neurodegenerative disorders, and infectious diseases. While numerous factors that promote autophagy have been characterized, the key mechanisms that prevent excessive autophagy are less well understood. Here, we identify CSNK2/CK2 (casein kinase 2) as a negative regulator of autophagy. Pharmacological inhibition of CSNK2 activity or siRNA-mediated depletion of CSNK2 increased basal autophagic flux in cell lines and primary human lung cells. Vice versa, ectopic expression of CSNK2 reduced autophagic flux. Mechanistically, CSNK2 interacted with the FLN (filamin)-NHL domain-containing tripartite motif (TRIM) family members TRIM2, TRIM3 and TRIM71. Our data show that recruitment of CSNK2 to the C-terminal NHL domain of TRIM3 lead to its robust phosphorylation at serine 661 by CSNK2. A phosphorylation-defective mutant of TRIM3 was unable to reduce autophagosome numbers indicating that phosphorylation by CSNK2 is required for TRIM-mediated autophagy inhibition. All three TRIMs facilitated inactivation of the ULK1-BECN1 autophagy initiation complex by facilitating ULK1 serine 757 phosphorylation. Inhibition of CSNK2 promoted autophagy upon influenza A virus (IAV) and measles virus (MeV) infection. In line with this, targeting of CSNK2 or depletion of TRIM2, TRIM3 or TRIM71 enhanced autophagy-dependent restriction of IAV, MeV and human immunodeficiency virus 1 (HIV-1). Thus, our results identify the CSNK2-TRIM2, -TRIM3, -TRIM71 axis as a key regulatory pathway that limits autophagy. Targeting this axis may allow for therapeutic induction of autophagy against viral infections and in diseases associated with dysregulated autophagy.

19.
Cell Host Microbe ; 31(8): 1317-1330.e10, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37478852

ABSTRACT

Direct targeting of essential viral enzymes such as proteases, polymerases, and helicases has long been the major focus of antiviral drug design. Although successful for some viral enzymes, targeting viral helicases is notoriously difficult to achieve, demanding alternative strategies. Here, we show that the NS3 helicase of Zika virus (ZIKV) undergoes acetylation in its RNA-binding tunnel. Regulation of the acetylated state of K389 in ZIKV NS3 modulates RNA binding and unwinding and is required for efficient viral replication. NS3 acetylation is mediated by a specific isoform of the host acetyltransferase KAT5 (KAT5γ), which translocates from the nucleus to viral replication complexes upon infection. NS3 acetylation by KAT5γ and its proviral role are also conserved in West Nile virus (WNV), dengue virus (DENV), and yellow fever virus (YFV). Our study provides molecular insight into how a cellular acetyltransferase regulates viral helicase functions, unveiling a previously unknown target for antiviral drug development.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Humans , Flavivirus/genetics , Zika Virus/genetics , Acetylation , RNA Helicases/genetics , Virus Replication/physiology , DNA Helicases , Antiviral Agents/pharmacology , RNA , Viral Nonstructural Proteins/metabolism
20.
iScience ; 26(4): 106395, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36968088

ABSTRACT

Opposing effects of interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) on SARS-CoV-2 infection have been reported. The reasons for this are unclear and the role of IFITMs in infection of other human coronaviruses (hCoVs) remains poorly understood. Here, we demonstrate that endogenous expression of IFITM2 and/or IFITM3 is critical for efficient replication of SARS-CoV-1, SARS-CoV-2 and hCoV-OC43 but has little effect on MERS-, NL63-and 229E-hCoVs. In contrast, overexpression of IFITMs inhibits all these hCoVs, and the corresponding spike-containing pseudo-particles, except OC43, which is enhanced by IFITM3. We further demonstrate that overexpression of IFITMs impairs cell surface expression of ACE2 representing the entry receptor of SARS-CoVs and hCoV-NL63 but not hCoV-OC43. Our results explain the inhibitory effects of artificial IFITM overexpression on ACE2-tropic SARS-CoVs and show that three hCoVs, including major causative agents of severe respiratory disease, hijack IFITMs for efficient infection of human cells.

SELECTION OF CITATIONS
SEARCH DETAIL