Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Cell Immunol ; 371: 104457, 2022 01.
Article in English | MEDLINE | ID: mdl-34883342

ABSTRACT

Statins are HMG-CoA reductase inhibitors prescribed for lowering cholesterol. They can also inhibit inflammatory responses by suppressing isoprenylation of small G proteins. Consistent with this, we previously found that fluvastatin suppresses IgE-mediated mast cell function. However, some studies have found that statins induced pro-inflammatory cytokines in macrophages and NK cells. In contrast to IgE signaling, we show that fluvastatin augments IL-33-induced TNF and IL-6 production by mast cells. This effect required the key mast cell growth factor, stem cell factor (SCF). Treatment of IL-33-activated mast cells with mevalonic acid or isoprenoids reduced fluvastatin effects, suggesting fluvastatin acts at least partly by reducing isoprenoid production. Fluvastatin also enhanced IL-33-induced NF-κB transcriptional activity and promoted neutrophilic peritonitis in vivo, a response requiring mast cell activation. Other statins tested did not enhance IL-33 responsiveness. Therefore, this work supports observations of unexpected pro-inflammatory effects of some statins and suggests mechanisms by which this may occur. Because statins are candidates for repurposing in inflammatory disorders, our work emphasizes the importance of understanding the pleiotropic and possible unexpected effects of these drugs.


Subject(s)
Fluvastatin/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Interleukin-33/metabolism , Interleukin-6/biosynthesis , Mast Cells/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Animals , Cells, Cultured , Humans , Immunoglobulin E/immunology , Inflammation/immunology , Killer Cells, Natural/immunology , Macrophages/immunology , Mevalonic Acid/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Peritonitis/chemically induced , Prenylation/drug effects , Stem Cell Factor/metabolism , Terpenes/pharmacology , Transcription Factor RelA/metabolism , Transcription, Genetic/drug effects
2.
Cell Immunol ; 341: 103918, 2019 07.
Article in English | MEDLINE | ID: mdl-31030957

ABSTRACT

Mast cells have functional plasticity affected by their tissue microenvironment, which greatly impacts their inflammatory responses. Because lactic acid (LA) is abundant in inflamed tissues and tumors, we investigated how it affects mast cell function. Using IgE-mediated activation as a model system, we found that LA suppressed inflammatory cytokine production and degranulation in mouse peritoneal mast cells, data that were confirmed with human skin mast cells. In mouse peritoneal mast cells, LA-mediated cytokine suppression was dependent on pH- and monocarboxylic transporter-1 expression. Additionally, LA reduced IgE-induced Syk, Btk, and ERK phosphorylation, key signals eliciting inflammation. In vivo, LA injection reduced IgE-mediated hypothermia in mice undergoing passive systemic anaphylaxis. Our data suggest that LA may serve as a feedback inhibitor that limits mast cell-mediated inflammation.


Subject(s)
Anaphylaxis/prevention & control , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Feedback, Physiological , Immunoglobulin E/genetics , Lactic Acid/pharmacology , Mast Cells/drug effects , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/immunology , Anaphylaxis/chemically induced , Anaphylaxis/immunology , Anaphylaxis/pathology , Animals , Dinitrophenols/administration & dosage , Dinitrophenols/antagonists & inhibitors , Female , Gene Expression Regulation , Ketoprofen/pharmacology , Lactic Acid/immunology , Lactic Acid/metabolism , Mast Cells/immunology , Mast Cells/pathology , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/immunology , Peritoneal Cavity/pathology , Phosphorylation/drug effects , Primary Cell Culture , Serum Albumin/administration & dosage , Serum Albumin/antagonists & inhibitors , Signal Transduction , Skin/drug effects , Skin/immunology , Skin/pathology , Syk Kinase/genetics , Syk Kinase/immunology , Symporters/genetics , Symporters/immunology
3.
J Exp Biol ; 222(Pt 16)2019 08 23.
Article in English | MEDLINE | ID: mdl-31444280

ABSTRACT

The horse has evolved to gallop economically at high speed. Limb force increases with speed but direct measures of limb ground reaction forces (GRFs) at gallop are sparse. This study reports GRFs for multiple limbs, using force plates, across seven Thoroughbred racehorses during ridden galloping. The results show peak vertical GRF values of 13.6 N kg-1 (non-lead hindlimb), 12.3 N kg-1 (lead hindlimb), 14.0 N kg-1 (non-lead forelimb) and 13.6 N kg-1 (lead forelimb) at 11.4 m s-1 and recorded values are consistent with those predicted from duty factor. The distribution of body weight between the forelimbs and hindlimbs is approximated to 50:50, and is variable with speed, unlike the 60:40 commonly stated for cursorial quadrupeds in the literature. An even distribution of load on all limbs may help minimise accumulation of fatigue and assist in injury avoidance. Cranio-caudal force data concur with the observation that horses apply a net accelerative impulse with the hindlimbs and a net decelerative impulse with the forelimbs. Capturing GRFs enhances our knowledge on the mechanics of galloping in fast-moving species and provides insight into injury risk and factors limiting athletic performance.


Subject(s)
Horses/physiology , Locomotion , Acceleration , Animals , Biomechanical Phenomena , Weight-Bearing
4.
J Immunol ; 199(3): 866-873, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28637902

ABSTRACT

TGF-ß1 is involved in many pathological conditions, including autoimmune disorders, cancer, and cardiovascular and allergic diseases. We have previously found that TGF-ß1 can suppress IgE-mediated mast cell activation of human and mouse mast cells. IL-33 is a member of the IL-1 family capable of inducing mast cell responses and enhancing IgE-mediated activation. In this study, we investigated the effects of TGF-ß on IL-33-mediated mast cell activation. Bone marrow-derived mast cells cultured in TGF-ß1, ß2, or ß3 showed reduced IL-33-mediated production of TNF, IL-6, IL-13, and MCP-1 in a concentration-dependent manner. TGF-ß1 inhibited IL-33-mediated Akt and ERK phosphorylation as well as NF-κB- and AP-1-mediated transcription. These effects were functionally important, as TGF-ß1 injection suppressed IL-33-induced systemic cytokines in vivo and inhibited IL-33-mediated cytokine release from human mast cells. TGF-ß1 also suppressed the combined effects of IL-33 and IgE-mediated activation on mouse and human mast cells. The role of IL-33 in the pathogenesis of allergic diseases is incompletely understood. These findings, consistent with our previously reported effects of TGF-ß1 on IgE-mediated activation, demonstrate that TGF-ß1 can provide broad inhibitory signals to activated mast cells.


Subject(s)
Interleukin-33/immunology , Mast Cells/immunology , Transforming Growth Factor beta1/physiology , Animals , Cells, Cultured , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Cytokines/immunology , Humans , Immunoglobulin E/immunology , Interleukin-6/biosynthesis , Interleukin-6/immunology , Lymphocyte Activation/drug effects , MAP Kinase Signaling System/drug effects , Mast Cells/drug effects , Mast Cells/metabolism , Mice , NF-kappa B/genetics , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Receptors, IgE/immunology , Transcription Factor AP-1/genetics , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta3/pharmacology
5.
J Exp Biol ; 221(Pt 18)2018 09 25.
Article in English | MEDLINE | ID: mdl-30072386

ABSTRACT

Although many arthropods have the ability to voluntarily lose limbs, how these animals rapidly adapt to such an extreme perturbation remains poorly understood. It is thought that moving with certain gaits can enable efficient, stable locomotion; however, switching gaits requires complex information flow between and coordination of an animal's limbs. We show here that upon losing two legs, spiders can switch to a novel, more statically stable gait, or use temporal adjustments without a gait change. The resulting gaits have higher overall static stability than the gaits that would be imposed by limb loss. By decreasing the time spent in a low-stability configuration - effectively 'limping' over less-stable phases of the stride - spiders increased the overall stability of the less statically stable gait with no observable reduction in speed, as compared with the intact condition. Our results shed light on how voluntary limb loss could have persisted evolutionarily among many animals, and provide bioinspired solutions for robots when they break or lose limbs.


Subject(s)
Extremities , Gait , Spiders/physiology , Animals , Biomechanical Phenomena , Extremities/surgery
6.
J Immunol ; 197(7): 2909-17, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27559047

ABSTRACT

Lactic acid (LA) is present in tumors, asthma, and wound healing, environments with elevated IL-33 and mast cell infiltration. Although IL-33 is a potent mast cell activator, how LA affects IL-33-mediated mast cell function is unknown. To investigate this, mouse bone marrow-derived mast cells were cultured with or without LA and activated with IL-33. LA reduced IL-33-mediated cytokine and chemokine production. Using inhibitors for monocarboxylate transporters (MCT) or replacing LA with sodium lactate revealed that LA effects are MCT-1- and pH-dependent. LA selectively altered IL-33 signaling, suppressing TGF-ß-activated kinase-1, JNK, ERK, and NF-κB phosphorylation, but not p38 phosphorylation. LA effects in other contexts have been linked to hypoxia-inducible factor (HIF)-1α, which was enhanced in bone marrow-derived mast cells treated with LA. Because HIF-1α has been shown to regulate the microRNA miR-155 in other systems, LA effects on miR-155-5p and miR-155-3p species were measured. In fact, LA selectively suppressed miR-155-5p in an HIF-1α-dependent manner. Moreover, overexpressing miR-155-5p, but not miR-155-3p, abolished LA effects on IL-33-induced cytokine production. These in vitro effects of reducing cytokines were consistent in vivo, because LA injected i.p. into C57BL/6 mice suppressed IL-33-induced plasma cytokine levels. Lastly, IL-33 effects on primary human mast cells were suppressed by LA in an MCT-dependent manner. Our data demonstrate that LA, present in inflammatory and malignant microenvironments, can alter mast cell behavior to suppress inflammation.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/prevention & control , Interleukin-33/immunology , Lactic Acid/pharmacology , Mast Cells/drug effects , Mast Cells/immunology , MicroRNAs/genetics , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Female , Humans , Inflammation/immunology , Male , Mast Cells/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/biosynthesis , Structure-Activity Relationship
7.
J Immunol ; 196(11): 4457-67, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27183599

ABSTRACT

IL-10 is an important regulatory cytokine that modulates a wide range of immune cells. Whereas it is best known for its ability to suppress immune responses, IL-10 has been found to be pathogenic in several human and animal studies of immune-mediated diseases. There is a considerable gap in our understanding of the molecular mechanisms behind the stimulatory effects of IL-10 during allergic inflammation. IL-10 treatment has been shown to suppress mast cell TNF production. In this study, we report that whereas TNF secretion was reduced, IL-10 surprisingly enhanced IgE-mediated protease and cytokine production both in vitro and in vivo. This stimulatory effect was consistent in mouse and human skin mast cells. IL-10 enhanced activation of the key FcεRI signaling proteins Stat5, JNK, and ERK. We demonstrate that IL-10 effects are dependent on Stat3 activation, eliciting miR-155 expression, with a resulting loss of suppressor of cytokine signaling-1. The importance of miR-155 was demonstrated by the inability of IL-10 to enhance anaphylaxis in miR-155-deficient mice. Taken together, our results reveal an IL-10-induced, Stat3-miR-155 signaling pathway that can promote mast cell responses.


Subject(s)
Immunoglobulin E/immunology , Interleukin-10/immunology , Mast Cells/immunology , MicroRNAs/genetics , Suppressor of Cytokine Signaling 1 Protein/genetics , Animals , Cells, Cultured , Mast Cells/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/immunology
8.
J Immunol ; 196(4): 1461-70, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26773154

ABSTRACT

Mast cell (MC)- and basophil-associated inflammatory diseases are a considerable burden to society. A significant portion of patients have symptoms despite standard-of-care therapy. Statins, used to lower serum cholesterol, have immune-modulating activities. We tested the in vitro and in vivo effects of statins on IgE-mediated MC and basophil activation. Fluvastatin showed the most significant inhibitory effects of the six statins tested, suppressing IgE-induced cytokine secretion among mouse MCs and basophils. The effects of fluvastatin were reversed by mevalonic acid or geranylgeranyl pyrophosphatase, and mimicked by geranylgeranyl transferase inhibition. Fluvastatin selectively suppressed key FcεRI signaling pathways, including Akt and ERK. Although MCs and basophils from the C57BL/6J mouse strain were responsive to fluvastatin, those from 129/SvImJ mice were completely resistant. Resistance correlated with fluvastatin-induced upregulation of the statin target HMG-CoA reductase. Human MC cultures from eight donors showed a wide range of fluvastatin responsiveness. These data demonstrate that fluvastatin is a potent suppressor of IgE-mediated MC activation, acting at least partly via blockade of geranyl lipid production downstream of HMG-CoA reductase. Importantly, consideration of statin use for treating MC-associated disease needs to incorporate genetic background effects, which can yield drug resistance.


Subject(s)
Basophils/drug effects , Fatty Acids, Monounsaturated/pharmacology , Immunoglobulin E/biosynthesis , Indoles/pharmacology , Mast Cells/drug effects , Acyl Coenzyme A/genetics , Acyl Coenzyme A/immunology , Animals , Apoptosis , Basophils/immunology , Cells, Cultured , Cytokines/biosynthesis , Farnesyltranstransferase/metabolism , Female , Fluvastatin , Genotype , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Immunoglobulin E/immunology , Mast Cells/immunology , Mevalonic Acid/pharmacology , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects , Th2 Cells/immunology
9.
Cell Immunol ; 319: 10-16, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28750923

ABSTRACT

While IgE is considered the primary mediator of mast cell activation, IL-33 contributes substantially in asthma, allergic rhinitis, and atopic dermatitis. To develop effective treatments for allergic disease, it is important to understand the role of therapeutic agents on IL-33 activation. We examined the effect of Didox (3,4-dihydroxybenzohydroxamic acid), an antioxidant and ribonucleotide reductase (RNR) inhibitor, on IL-33-mediated mast cell activation. Didox suppressed IL-6, IL-13, TNF, and MIP-1α (CCL3) production in bone marrow derived mast cells following IL-33 activation. This suppression was observed in different genetic backgrounds and extended to peritoneal mast cells. The antioxidant N-acetylcysteine mimicked the suppression of Didox, albeit at a much higher dose, while the RNR inhibitor hydroxyurea had no effect. Didox substantially suppressed IL-33-mediated NFκB and AP-1 transcriptional activities. These results suggest that Didox attenuates IL-33-induced mast cell activation and should be further studied as a potential therapeutic agent for inflammatory diseases involving IL-33.


Subject(s)
Gene Expression Regulation/drug effects , Hydroxamic Acids/pharmacology , Immunosuppressive Agents/pharmacology , Interleukin-33/pharmacology , Mast Cells/drug effects , Acetylcysteine/pharmacology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Chemokine CCL3/antagonists & inhibitors , Chemokine CCL3/genetics , Chemokine CCL3/immunology , Female , Gene Expression Regulation/immunology , Genes, Reporter , Hydroxyurea/pharmacology , Interleukin-13/antagonists & inhibitors , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-33/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Luciferases/genetics , Luciferases/immunology , Male , Mast Cells/cytology , Mast Cells/immunology , Mice , Mice, Inbred C57BL , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/immunology , Primary Cell Culture , Signal Transduction , Transcription Factor AP-1/antagonists & inhibitors , Transcription Factor AP-1/genetics , Transcription Factor AP-1/immunology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
10.
Cell Immunol ; 322: 41-48, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28964543

ABSTRACT

Mast cell activation via the high-affinity IgE receptor (FcεRI) elicits production of inflammatory mediators central to allergic disease. As a synthetic antioxidant and a potent ribonucleotide reductase (RNR) inhibitor, Didox (3,4-dihyroxybenzohydroxamic acid) has been tested in clinical trials for cancer and is an attractive therapeutic for inflammatory disease. We found that Didox treatment of mouse bone marrow-derived mast cells (BMMC) reduced IgE-stimulated degranulation and cytokine production, including IL-6, IL-13, TNF and MIP-1a (CCL3). These effects were consistent using BMMC of different genetic backgrounds and peritoneal mast cells. While the RNR inhibitor hydroxyurea had little or no effect on IgE-mediated function, high concentrations of the antioxidant N-acetylcysteine mimicked Didox-mediated suppression. Furthermore, Didox increased expression of the antioxidant genes superoxide dismutase and catalase, and suppressed DCFH-DA fluorescence, indicating reduced reactive oxygen species production. Didox effects were not due to changes in FcεRI expression or cell viability, suggesting it inhibits signaling required for inflammatory cytokine production. In support of this, we found that Didox reduced FcεRI-mediated AP-1 and NFκB transcriptional activity. Finally, Didox suppressed mast cell-dependent, IgE-mediated passive systemic anaphylaxis in vivo. These data demonstrate the potential use for Didox asa means of antagonizing mast cell responses in allergic disease.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Hydroxamic Acids/pharmacology , Hypersensitivity/drug therapy , Immunoglobulin E/immunology , Mast Cells/immunology , NF-kappa B/genetics , Transcription Factor AP-1/genetics , Acetylcysteine/pharmacology , Animals , Bone Marrow Cells/immunology , Catalase/biosynthesis , Cell Degranulation/drug effects , Cells, Cultured , Chemokine CCL3/biosynthesis , Hypersensitivity/immunology , Interleukin-13/biosynthesis , Interleukin-6/biosynthesis , Mast Cells/drug effects , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Oxidative Stress/immunology , Reactive Oxygen Species/metabolism , Superoxide Dismutase/biosynthesis , Transcription, Genetic/drug effects , Tumor Necrosis Factor-alpha/biosynthesis
11.
J Exp Biol ; 220(Pt 10): 1864-1874, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28264903

ABSTRACT

Legged animals utilize gait selection to move effectively and must recover from environmental perturbations. We show that on rough terrain, domestic dogs, Canis lupus familiaris, spend more time in longitudinal quasi-statically stable patterns of movement. Here, longitudinal refers to the rostro-caudal axis. We used an existing model in the literature to quantify the longitudinal quasi-static stability of gaits neighbouring the walk, and found that trot-like gaits are more stable. We thus hypothesized that when perturbed, the rate of return to a stable gait would depend on the direction of perturbation, such that perturbations towards less quasi-statically stable patterns of movement would be more rapid than those towards more stable patterns of movement. The net result of this would be greater time spent in longitudinally quasi-statically stable patterns of movement. Limb movement patterns in which diagonal limbs were more synchronized (those more like a trot) have higher longitudinal quasi-static stability. We therefore predicted that as dogs explored possible limb configurations on rough terrain at walking speeds, the walk would shift towards trot. We gathered experimental data quantifying dog gait when perturbed by rough terrain and confirmed this prediction using GPS and inertial sensors (n=6, P<0.05). By formulating gaits as trajectories on the n-torus we are able to make tractable the analysis of gait similarity. These methods can be applied in a comparative study of gait control which will inform the ultimate role of the constraints and costs impacting locomotion, and have applications in diagnostic procedures for gait abnormalities, and in the development of agile legged robots.


Subject(s)
Dogs/physiology , Gait , Animals , Biomechanical Phenomena , Extremities , Female , Male , Models, Theoretical , Walking/physiology
12.
Biol Cybern ; 111(3-4): 269-277, 2017 08.
Article in English | MEDLINE | ID: mdl-28631166

ABSTRACT

Gaits and gait transitions play a central role in the movement of animals. Symmetry is thought to govern the structure of the nervous system, and constrain the limb motions of quadrupeds. We quantify the symmetry of dog gaits with respect to combinations of bilateral, fore-aft, and spatio-temporal symmetry groups. We tested the ability of symmetries to model motion capture data of dogs walking, trotting and transitioning between those gaits. Fully symmetric models performed comparably to asymmetric with only a [Formula: see text] increase in the residual sum of squares and only one-quarter of the parameters. This required adding a spatio-temporal shift representing a lag between fore and hind limbs. Without this shift, the symmetric model residual sum of squares was [Formula: see text] larger. This shift is related to (linear regression, [Formula: see text], [Formula: see text]) dog morphology. That this symmetry is respected throughout the gaits and transitions indicates that it generalizes outside a single gait. We propose that relative phasing of limb motions can be described by an interaction potential with a symmetric structure. This approach can be extended to the study of interaction of neurodynamic and kinematic variables, providing a system-level model that couples neuronal central pattern generator networks and mechanical models.


Subject(s)
Gait/physiology , Animals , Biomechanical Phenomena , Dogs , Forelimb/physiology , Hindlimb/physiology
13.
J Anat ; 229(4): 514-35, 2016 10.
Article in English | MEDLINE | ID: mdl-27173448

ABSTRACT

Musculoskeletal modelling has become a valuable tool with which to understand how neural, muscular, skeletal and other tissues are integrated to produce movement. Most musculoskeletal modelling work has to date focused on humans or their close relatives, with few examples of quadrupedal animal limb models. A musculoskeletal model of the mouse hindlimb could have broad utility for questions in medicine, genetics, locomotion and neuroscience. This is due to this species' position as a premier model of human disease, having an array of genetic tools for manipulation of the animal in vivo, and being a small quadruped, a category for which few models exist. Here, the methods used to develop the first three-dimensional (3D) model of a mouse hindlimb and pelvis are described. The model, which represents bones, joints and 39 musculotendon units, was created through a combination of previously gathered muscle architecture data from microdissections, contrast-enhanced micro-computed tomography (CT) scanning and digital segmentation. The model allowed muscle moment arms as well as muscle forces to be estimated for each musculotendon unit throughout a range of joint rotations. Moment arm analysis supported the reliability of musculotendon unit placement within the model, and comparison to a previously published rat hindlimb model further supported the model's reliability. A sensitivity analysis performed on both the force-generating parameters and muscle's attachment points of the model indicated that the maximal isometric muscle moment is generally most sensitive to changes in either tendon slack length or the coordinates of insertion, although the degree to which the moment is affected depends on several factors. This model represents the first step in the creation of a fully dynamic 3D computer model of the mouse hindlimb and pelvis that has application to neuromuscular disease, comparative biomechanics and the neuromechanical basis of movement. Capturing the morphology and dynamics of the limb, it enables future dissection of the complex interactions between the nervous and musculoskeletal systems as well as the environment.


Subject(s)
Bone and Bones/anatomy & histology , Bone and Bones/physiology , Computer Simulation , Models, Animal , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Animals , Biomechanical Phenomena , Female , Hindlimb , Locomotion/physiology , Mice , Mice, Inbred C57BL , X-Ray Microtomography
14.
Biol Lett ; 8(4): 678-81, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22399784

ABSTRACT

Choice of pacing strategy and the benefit of aerodynamic drafting are thought to be key determinants of racing performance. These effects have largely been analysed without reference to final outcome, in small datasets with low temporal resolution, and a focus on human swimming, cycling and running. Here, we determined the position and speed of 44,803 racehorses, once per second, in 3,357 races ranging in length from 1006 to 4225 m (50.9-292.9 seconds duration) using a validated radio tracking system. We find that aerodynamic drafting has a marked effect on horse performance, and hence racing outcome. Furthermore, we demonstrate that race length-dependent pacing strategies are correlated with the fastest racing times, with some horses reaching a maximum speed in excess of 19 m s(-1). The higher speeds seen with certain pacing strategies may arise due to the nature of pack racing itself, or may be a reflection of individual capabilities, that is, corresponding to horses that perform well in roles suited to their 'front-running' or 'chaser' personality traits.


Subject(s)
Behavior, Animal/physiology , Horses/physiology , Running/physiology , Animals , Biomechanical Phenomena/physiology , Competitive Behavior/physiology , Computational Biology/methods , Linear Models , Time Factors
15.
Curr Biol ; 32(12): R676-R680, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35728552

ABSTRACT

All else being equal, evolution is going to drive animals to require the least food to move a unit distance. What is the best way to do that? Some efficiencies can be 'hard-wired' into the body - the relatively unchanging morphology of the animal. But flexibility is also needed - given the task at hand, state of the body, or state of the external environment, it may be best to dynamically choose an appropriate mode of locomotion. For example, slow walking may be great for searching and foraging, but it won't catch fast moving prey. Similarly, maximum speed gallops may be great for escaping danger, but they preclude eating along the way. This primer summarizes what we know about the determinants of locomotor costs and the strategies animals use to minimize cost. It summarizes key findings across levels of organization, from individual muscles to interactions with other organisms and the environment. At the mid-level of organization we highlight gaits, a particularly interesting topic of inquiry with a rich history. We are in an exciting time for the science of movement because we have more, better tools than ever before for observing and manipulating systems, from the molecular level to herds of animals on the Savannah. Even more importantly, there are so many open, exciting questions to ask.


Subject(s)
Gait , Locomotion , Animals , Biomechanical Phenomena , Gait/physiology , Locomotion/physiology , Walking
16.
Front Mol Neurosci ; 15: 872634, 2022.
Article in English | MEDLINE | ID: mdl-36090254

ABSTRACT

Neuromodulatory therapies for spinal cord injury (SCI) such as electrical epidural stimulation (EES) are increasingly effective at improving patient outcomes. These improvements are thought to be due, at least in part, to plasticity in neuronal circuits. Precisely which circuits are influenced and which afferent classes are most effective in stimulating change remain important open questions. Genetic tools, such as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), support targeted and reversible neuromodulation as well as histological characterization of manipulated neurons. We therefore transduced and activated lumbar large diameter peripheral afferents with excitatory (hM3Dq) DREADDs, in a manner analogous to EES, in a rat hemisection model, to begin to trace plasticity and observe concomitant locomotor changes. Chronic DREADDs activation, coupled with thrice weekly treadmill training, was observed to increase afferent fluorescent labeling within motor pools and Clarke's column when compared to control animals. This plasticity may underlie kinematic differences that we observed across stages of recovery, including an increased and less variable hindquarters height in DREADDs animals, shorter step durations, a more flexed ankle joint early in recovery, a less variable ankle joint angle in swing phase, but a more variable hip joint angle. Withdrawal of DREADDs agonist, clozapine-N-oxide (CNO) left these kinematic differences largely unaffected; suggesting that DREADDs activation is not necessary for them later in recovery. However, we observed an intermittent "buckling" phenomenon in DREADDs animals without CNO activation, that did not occur with CNO re-administration. Future studies could use more refined genetic targeted of specific afferent classes, and utilize muscle recordings to find where afferent modulation is most influential in altering motor output.

18.
J Exp Biol ; 214(Pt 16): 2690-6, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21795564

ABSTRACT

Gliding is thought to be an economical form of locomotion. However, few data on the climbing and gliding of free-ranging gliding mammals are available. This study employed an animal-borne three-dimensional acceleration data-logging system to collect continuous data on the climbing and gliding of free-ranging Malayan colugos, Galeopterus variegatus. We combined these movement data with empirical estimates of the metabolic costs to move horizontally or vertically to test this long-standing hypothesis by determining whether the metabolic cost to climb to sufficient height to glide a given distance was less than the cost to move an equivalent distance horizontally through the canopy. On average, colugos climb a short distance to initiate glides. However, due to the high energetic cost of climbing, gliding is more energetically costly to move a given horizontal distance than would be predicted for an animal travelling the same distance through the canopy. Furthermore, because colugos spend a small fraction of their time engaged in locomotor activity, the high costs have little effect on their overall energy budget. As a result, the energetic economy hypothesis for the origins of gliding is not supported. It is likely that other ecologically relevant factors have played a greater role in the origins of gliding in colugos and other mammals.


Subject(s)
Energy Metabolism/physiology , Flight, Animal/physiology , Lemur/physiology , Acceleration , Animals , Darkness , Locomotion/physiology , Malaysia , Reproducibility of Results , Rotation , Time Factors
19.
Bioinspir Biomim ; 16(1): 015001, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33684074

ABSTRACT

Understanding how animals regulate their gait during locomotion can give biological insight and inspire controllers for robots. Why animals use the gallop at the highest speeds remains incompletely explained. Hypothesized reasons for galloping include that it enables recruitment of spinal musculoskeletal structures, that it minimizes energy losses as predicted by collisional theory, or that it provides extended flight phases with more time for leg placement and hence enhances or provides necessary maneuverability [Alexander 1988 Am. Zool. 28 237-45; Ruina, Bertram and Srinivasan 2005 J. Theor. Biol. 237 170-92; Usherwood 2019 J. Exp. Zool. Part A 333 9-19; Hildebrand1989 Bioscience 39 766-75]. The latter-most hypothesis has implications in robotics, where controllers based on the concept of multistability have gained some traction. Here we examine this hypothesis by studying the dynamics of dog gait on flat and rough terrain. This hypothesis predicts that injection of noise into timing and location of ground contacts during the galloping gait by rough terrain will result in an isotropically more noisy gallop gait, centered around the gallop used on flat terrain. We find that dog gait in terms of leg swing timing on rough terrain is not consistently more variable about the mean gait, and constrain the upper limits of this variability to values that are unlikely to be biologically relevant. However the location of the mean gait indeed only shifts by a small amount. Therefore, we find limited support for this hypothesis. This suggests that achieving a target gallop gait with tight regulation is still the desired behavior, and that large amounts of variability in gait are not a desired feature of the gallop. For robotics, our results suggest that the emergent animal-environment dynamics on rough terrain do not exhibit uniformly wider basins of attraction. Future robotics work could test whether controllers that do or do not allow shifts in mean gait and gait variability produce more economical and/or stable gallops.


Subject(s)
Gait , Robotics , Animals , Biomechanical Phenomena , Dogs , Locomotion
20.
Article in English | MEDLINE | ID: mdl-33815563

ABSTRACT

OBJECTIVE: H-Reflex is a test that is carried out to measure the relative excitability of reflex pathways. Although reliable, conventional methods consist of performing many small steps, which requires a high level of attentiveness, and thus can carry an elevated risk of human error, despite proper training. Equipment that is available to perform those tests with different levels of automation are typically proprietary, inextensible by the user, and expensive. Here we present a novel MATLAB application that can accurately and reliably perform automated H-Reflex measurements, test the stimulating electrodes, and carry out typical subsequent analyses. METHODS: This application is a Graphical User Interface that works with inexpensive equipment and offers many important features such as measuring electrode impedance in-situ, automating lengthy measurements like recruitment curves and frequency response trials, standardizing electric stimulation properties, automatic exporting of digital data and metadata, and immediately analyzing acquired data with single-click events. RESULTS: Our new method was validated against conventional H-Reflex measurement methods with 2 anesthetized rats. The difference between acquired data using both methods was negligible (mean difference=0.0038; std=0.0121). Our app also detected electrode impedance with high accuracy (94%). CONCLUSION: The method presented here allows reliable and efficient automated H-reflex measurements and can accurately analyze the collected data. SIGNIFICANCE: The features provided by our app can speed up data collection and reduce human error, and unlike conventional methods, allow the user to analyze data immediately after the record. This can result in higher research quality and give broader access to the technique.

SELECTION OF CITATIONS
SEARCH DETAIL