Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nat Commun ; 11(1): 3698, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32703943

ABSTRACT

Intellectual disability (ID) is a heterogeneous clinical entity and includes an excess of males who harbor variants on the X-chromosome (XLID). We report rare FAM50A missense variants in the original Armfield XLID syndrome family localized in Xq28 and four additional unrelated males with overlapping features. Our fam50a knockout (KO) zebrafish model exhibits abnormal neurogenesis and craniofacial patterning, and in vivo complementation assays indicate that the patient-derived variants are hypomorphic. RNA sequencing analysis from fam50a KO zebrafish show dysregulation of the transcriptome, with augmented spliceosome mRNAs and depletion of transcripts involved in neurodevelopment. Zebrafish RNA-seq datasets show a preponderance of 3' alternative splicing events in fam50a KO, suggesting a role in the spliceosome C complex. These data are supported with transcriptomic signatures from cell lines derived from affected individuals and FAM50A protein-protein interaction data. In sum, Armfield XLID syndrome is a spliceosomopathy associated with aberrant mRNA processing during development.


Subject(s)
DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Mutation/genetics , RNA-Binding Proteins/genetics , Spliceosomes/metabolism , Zebrafish Proteins/genetics , Adult , Animals , Cell Nucleus/metabolism , Child , Child, Preschool , DNA-Binding Proteins/metabolism , Family , Female , Gene Expression Regulation, Developmental , Humans , Male , Mice , Mutation, Missense/genetics , NIH 3T3 Cells , Pedigree , Phenotype , Protein Transport , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Nuclear/genetics , RNA-Binding Proteins/metabolism , Syndrome , Zebrafish/genetics , Zebrafish Proteins/metabolism
2.
Environ Microbiol ; 11(7): 1767-76, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19508559

ABSTRACT

Grazing of heterotrophic nanoflagellates on marine picophytoplankton presents a major mortality factor for this important group of primary producers. However, little is known of the selectivity of the grazing process, often merely being thought of as a general feature of cell size and motility. In this study, we tested grazing of two heterotrophic nanoflagellates, Paraphysomonas imperforata and Pteridomonas danica, on strains of marine Synechococcus. Both nanoflagellates proved to be selective in their grazing, with Paraphysomonas being able to grow on 5, and Pteridomonas on 11, of 37 Synechococcus strains tested. Additionally, a number of strains (11 for Paraphysomonas, 9 for Pteridomonas) were shown to be ingested, but not digested (and thus did not support growth of the grazer). Both the range of prey strains that supported growth as well as those that were ingested but not digested was very similar for the two grazers, suggesting a common property of these prey strains that lent them susceptible to grazing. Subsequent experiments on selected Synechococcus strains showed a pronounced difference in grazing susceptibility between wild-type Synechococcus sp. WH7803 and a spontaneous phage-resistant mutant derivative, WH7803PHR, suggesting that cell surface properties of the Synechococcus prey are an important attribute influencing grazing vulnerability.


Subject(s)
Chrysophyta/physiology , Stramenopiles/physiology , Synechococcus , Chrysophyta/growth & development , Chrysophyta/metabolism , Seawater/microbiology , Stramenopiles/growth & development , Stramenopiles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL