Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 96(1): 187-193, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38506405

ABSTRACT

Using 6-minute free-running intracranial-electroencephalogram (icEEG) during sleep, an optimized multilayer perceptron (MLP) neural network accurately maps the sensorimotor cortex (SM) and identifies the anterior lip of the central sulcus (CS) in intractable epilepsy patients. We calculated 6 performance metrics to evaluate the MLP's efficacy: accuracy, area under the curve (AUC), recall, precision, F1-scores, and specificity. Each layer had 4 neurons with hyperbolic TanH activation function and 4 with Gaussian distribution function. Conventional 10-fold cross-validation was used. Feature extension (ε) and weighted imbalanced data (w) improved MLP performance. ANN NEUROL 2024;96:187-193.


Subject(s)
Brain Mapping , Electrocorticography , Sensorimotor Cortex , Humans , Sensorimotor Cortex/physiology , Electrocorticography/methods , Male , Brain Mapping/methods , Female , Adult , Neural Networks, Computer , Drug Resistant Epilepsy/physiopathology , Young Adult , Electroencephalography/methods
2.
Article in English | MEDLINE | ID: mdl-38242679

ABSTRACT

BACKGROUND: The cingulate gyrus (CG), a brain structure above the corpus callosum, is recognised as part of the limbic system and plays numerous vital roles. However, its full functional capacity is yet to be understood. In recent years, emerging evidence from imaging modalities, supported by electrical cortical stimulation (ECS) findings, has improved our understanding. To our knowledge, there is a limited number of systematic reviews of the cingulate function studied by ECS. We aim to parcellate the CG by reviewing ECS studies. DESIGN/METHODS: We searched PubMed and Embase for studies investigating CG using ECS. A total of 30 studies met the inclusion criteria. We evaluated the ECS responses across the cingulate subregions and summarised the reported findings. RESULTS: We included 30 studies (totalling 887 patients, with a mean age of 31.8±9.8 years). The total number of electrodes implanted within the cingulate was 3028 electrode contacts; positive responses were obtained in 941 (31.1%, median percentages, 32.3%, IQR 22.2%-64.3%). The responses elicited from the CG were as follows. Simple motor (8 studies, 26.7 %), complex motor (10 studies, 33.3%), gelastic with and without mirth (7 studies, 23.3%), somatosensory (9 studies, 30%), autonomic (11 studies, 36.7 %), psychic (8 studies, 26.7%) and vestibular (3 studies, 10%). Visual and speech responses were also reported. Despite some overlap, the results indicate that the anterior cingulate cortex is responsible for most emotional, laughter and autonomic responses, while the middle cingulate cortex controls most complex motor behaviours, and the posterior cingulate cortex (PCC) regulates visual, among various other responses. Consistent null responses have been observed across different regions, emphasising PCC. CONCLUSIONS: Our results provide a segmental mapping of the functional properties of CG, helping to improve precision in the surgical planning of epilepsy.

3.
Curr Opin Neurol ; 36(2): 95-101, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36762633

ABSTRACT

PURPOSE OF REVIEW: Technological innovations in the preoperative evaluation, surgical techniques and outcome prediction in epilepsy surgery have grown exponentially over the last decade. This review highlights and emphasizes relevant updates in techniques and diagnostic tools, discussing their context within standard practice at comprehensive epilepsy centres. RECENT FINDINGS: High-resolution structural imaging has set an unprecedented opportunity to detect previously unrecognized subtle abnormalities. Machine learning and computer science are impacting the methodologies to analyse presurgical and surgical outcome data, building more accurate prediction models to tailor treatment strategies. Robotic-assisted placement of depth electrodes has increased the safety and ability to sample epileptogenic nodes within deep structures, improving our understanding of the seizure networks in drug-resistant epilepsy. The current available minimally invasive techniques are reasonable surgical alternatives to ablate or disrupt epileptogenic regions, although their sustained efficacy is still an active area of research. SUMMARY: Epilepsy surgery is still underutilized worldwide. Every patient who continues with seizures despite adequate trials of two well selected and tolerated antiseizure medications should be evaluated for surgical candidacy. Collaboration between academic epilepsy centres is of paramount importance to answer long-standing questions in epilepsy surgery regarding the understanding of spatio-temporal dynamics in epileptogenic networks and its impact on surgical outcomes.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Electroencephalography/methods , Epilepsy/diagnostic imaging , Epilepsy/surgery , Seizures , Prognosis , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Treatment Outcome
4.
Cereb Cortex ; 32(17): 3726-3735, 2022 08 22.
Article in English | MEDLINE | ID: mdl-34921723

ABSTRACT

We test the performance of a novel operator-independent EEG-based method for passive identification of the central sulcus (CS) and sensorimotor (SM) cortex. We studied seven patients with intractable epilepsy undergoing intracranial EEG (icEEG) monitoring, in whom CS localization was accomplished by standard methods. Our innovative approach takes advantage of intrinsic properties of the primary motor cortex (MC), which exhibits enhanced icEEG band-power and coherence across the CS. For each contact, we computed a composite power, coherence, and entropy values for activity in the high gamma band (80-115) Hz of 6-10 min of NREM sleep. Statistically transformed EEG data values that did not reach a threshold (th) were set to 0. We computed a metric M based on the transformed values and the mean Euclidian distance of each contact from contacts with Z-scores higher than 0. The last step was implemented to accentuate local network activity. The SM cortex exhibited higher EEG-band-power than non-SM cortex (P < 0.0002). There was no significant difference between the motor/premotor and sensory cortices (P < 0.47). CS was localized in all patients with 0.4 < th < 0.6. The primary hand and leg motor areas showed the highest metric values followed by the tongue motor area. Higher threshold values were specific (94%) for the anterior bank of the CS but not sensitive (42%). Intermediate threshold values achieved an acceptable trade-off (0.4: 89% specific and 70% sensitive).


Subject(s)
Drug Resistant Epilepsy , Motor Cortex , Brain Mapping/methods , Drug Resistant Epilepsy/surgery , Electrocorticography , Electroencephalography/methods , Humans , Sleep
5.
Epilepsia ; 62(6): e88-e97, 2021 06.
Article in English | MEDLINE | ID: mdl-33949690

ABSTRACT

The objective of this study was to monitor the extracellular brain chemistry dynamics at baseline and in relation to spontaneous seizures in human patients with refractory epilepsy. Thirty patients with drug-resistant focal epilepsy underwent intracranial electroencephalography and concurrent brain microdialysis for up to 8 continuous days. Extracellular brain glutamate, glutamine, and the branched-chain amino acids (BCAAs) valine, leucine, and isoleucine were quantified in the dialysis samples by liquid chromatography-tandem mass spectrometry. Extracellular BCAAs and glutamate were chronically elevated at baseline by approximately 1.5-3-fold in brain regions of seizure onset and propagation versus regions not involved by seizures. Moreover, isoleucine increased significantly above baseline as early as 3 h before a spontaneous seizure. BCAAs play important roles in glutamatergic neurotransmission, mitochondrial function, neurodegeneration, and mammalian target of rapamycin signaling. Because all of these processes have been implicated in epilepsy, the results suggest a novel role of BCAAs in the pathogenesis of spontaneous seizures.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Brain Chemistry , Drug Resistant Epilepsy/metabolism , Epilepsies, Partial/metabolism , Seizures/metabolism , Adolescent , Adult , Child , Child, Preschool , Chromatography, High Pressure Liquid , Electrocorticography , Electroencephalography , Extracellular Space , Female , Glutamic Acid/metabolism , Humans , Isoleucine/metabolism , Male , Microdialysis , Middle Aged , Tandem Mass Spectrometry , Young Adult
6.
Epilepsy Behav ; 118: 107902, 2021 05.
Article in English | MEDLINE | ID: mdl-33819715

ABSTRACT

Intraoperative electrocorticography (ECoG) is a useful technique to guide resections in epilepsy surgery and is mostly performed under general anesthesia. In this systematic literature review, we seek to investigate the effect of anesthetic agents on the quality and reliability of ECoG for localization of the epileptic focus. We conducted a systematic search using PubMed and EMBASE until January 2019, aiming to review the effects of anesthesia on ECoG yield. Fifty-eight studies were included from 1016 reviewed. There are favorable reports for dexmedetomidine and remifentanil during ECoG recording. There is inadequate, or sometimes conflicting, evidence to support using enflurane, isoflurane, sevoflurane, and propofol. There is evidence to avoid halothane, nitrous oxide, etomidate, ketamine, thiopental, methohexital, midazolam, fentanyl, and alfentanil due to undesired effects. Depth of anesthesia, intraoperative awareness, and surgical outcomes were not consistently evaluated. Available studies provide helpful information about the effect of anesthesia on ECoG to localize the epileptic focus. The proper use of anesthetic agents and careful dose titration, and effective communication between the neurophysiologist and anesthesiologist based on ECoG activity are essential in optimizing recordings. Anesthesia is a crucial variate to consider in the design of studies investigating ECoG and related biomarkers.


Subject(s)
Epilepsy , Isoflurane , Electrocorticography , Electroencephalography , Humans , Reproducibility of Results
7.
Epilepsia ; 61(10): 2183-2193, 2020 10.
Article in English | MEDLINE | ID: mdl-32944949

ABSTRACT

OBJECTIVE: In this positron emission tomography (PET) study with [11 C]UCB-J, we evaluated synaptic vesicle glycoprotein 2A (SV2A) binding, which is decreased in resected brain tissues from epilepsy patients, in subjects with temporal lobe epilepsy (TLE) and compared the regional binding pattern to [18 F]fluorodeoxyglucose (FDG) uptake. METHODS: Twelve TLE subjects and 12 control subjects were examined. Regional [11 C]UCB-J binding potential (BPND ) values were estimated using the centrum semiovale as a reference region. [18 F]FDG uptake in TLE subjects was quantified using mean radioactivity values. Asymmetry in outcome measures was assessed by comparison of ipsilateral and contralateral regions. Partial volume correction (PVC) with the iterative Yang algorithm was applied based on the FreeSurfer segmentation. RESULTS: In 11 TLE subjects with medial temporal lobe sclerosis (MTS), the hippocampal volumetric asymmetry was 25 ± 11%. After PVC, [11 C]UCB-J BPND asymmetry indices were 37 ± 19% in the hippocampus, with very limited asymmetry in other brain regions. Reductions in [11 C]UCB-J BPND values were restricted to the sclerotic hippocampus when compared to control subjects. The corresponding asymmetry in hippocampal [18 F]FDG uptake was 22 ± 7% and correlated with that of [11 C]UCB-J BPND across subjects (R2  = .38). Hippocampal asymmetries in [11 C]UCB-J binding were 1.7-fold larger than those of [18 F]FDG uptake. SIGNIFICANCE: [11 C]UCB-J binding is reduced in the seizure onset zone of TLE subjects with MTS. PET imaging of SV2A may be a promising biomarker approach in the presurgical selection and evaluation of TLE patients and may improve the sensitivity of molecular imaging for seizure focus detection.


Subject(s)
Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Positron-Emission Tomography/methods , Pyridines/metabolism , Pyrrolidinones/metabolism , Adult , Carbon Radioisotopes/metabolism , Female , Fluorodeoxyglucose F18/metabolism , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Male , Middle Aged , Protein Binding/physiology , Temporal Lobe/diagnostic imaging , Temporal Lobe/metabolism , Young Adult
8.
Epilepsy Behav ; 111: 107231, 2020 10.
Article in English | MEDLINE | ID: mdl-32615416

ABSTRACT

The term 'implantation effect' is used to describe an immediate and transient improvement in seizure frequency following an intracranial study for seizure onset localization. We conducted a retrospective analysis of 190 consecutive patients undergoing intracranial electroencephalogram (EEG) monitoring, of whom 41 had no subsequent resection/ablation/stimulation; 33 had adequate data and follow-up time available for analysis. Analysis of seizure frequency following an intracranial study showed 36% (12/33) responder rate (>50% seizure reduction) at one year, decreasing and stabilizing at 20% from year 4 onwards. In addition, we describe three patients (9%) who had long term seizure freedom of more than five years following electrode implantation alone, two of whom had thalamic depth electrodes. Electrode implantation perhaps leads to a neuromodulatory effect sufficient enough to disrupt epileptogenic networks. Rarely, this may be significant enough to even result in long term seizure freedom, as seen in our three patients.


Subject(s)
Electrocorticography/trends , Electrodes, Implanted/trends , Seizures/physiopathology , Seizures/surgery , Adolescent , Adult , Electrocorticography/psychology , Electrodes, Implanted/psychology , Female , Follow-Up Studies , Humans , Male , Monitoring, Physiologic/psychology , Monitoring, Physiologic/trends , Retrospective Studies , Seizures/psychology , Treatment Outcome , Young Adult
9.
Cereb Cortex ; 29(2): 461-474, 2019 02 01.
Article in English | MEDLINE | ID: mdl-29194517

ABSTRACT

Conscious perception occurs within less than 1 s. To study events on this time scale we used direct electrical recordings from the human cerebral cortex during a conscious visual perception task. Faces were presented at individually titrated visual threshold for 9 subjects while measuring broadband 40-115 Hz gamma power in a total of 1621 intracranial electrodes widely distributed in both hemispheres. Surface maps and k-means clustering analysis showed initial activation of visual cortex for both perceived and non-perceived stimuli. However, only stimuli reported as perceived then elicited a forward-sweeping wave of activity throughout the cerebral cortex accompanied by large-scale network switching. Specifically, a monophasic wave of broadband gamma activation moves through bilateral association cortex at a rate of approximately 150 mm/s and eventually reenters visual cortex for perceived but not for non-perceived stimuli. Meanwhile, the default mode network and the initial visual cortex and higher association cortex networks are switched off for the duration of conscious stimulus processing. Based on these findings, we propose a new "switch-and-wave" model for the processing of consciously perceived stimuli. These findings are important for understanding normal conscious perception and may also shed light on its vulnerability to disruption by brain disorders.


Subject(s)
Cerebral Cortex/physiology , Consciousness/physiology , Gamma Rhythm/physiology , Neurons/physiology , Reaction Time/physiology , Visual Perception/physiology , Adult , Brain Mapping/methods , Electroencephalography/methods , Female , Humans , Male , Photic Stimulation/methods
10.
Neuroimage ; 201: 116003, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31295566

ABSTRACT

Dynamic attention states are necessary to navigate the ever changing task demands of daily life. Previous investigations commonly utilize a block paradigm to study sustained and transient changes in attention networks. fMRI investigations have shown that sustained attention in visual block design attention tasks corresponds to decreased signal in the default mode and visual processing networks. While task negative networks are anticipated to decrease during active task engagement, it is unexpected that visual networks would also be suppressed during a visual task where event-related fMRI studies have found transient increases to visual stimuli. To resolve these competing results, the current investigations utilized intracranial EEG to directly interrogate visual and default mode network dynamics during a visual continuous performance task. We used the electrophysiological data to model expected fMRI signals and to maximize interpretation of current results with previous investigations. Results show broadband gamma power decreases in the default mode network, corresponding to previous EEG and fMRI findings. Meanwhile, visual processing regions including the primary visual cortex and fusiform gyrus demonstrate both sustained decreases during task engagement and stimuli-driven transient increases in gamma power. Modeled fMRI based on gamma power reproduces signal decreases reported in the fMRI literature, and emphasizes the insensitivity of fMRI to transient, regularly spaced signal changes embedded within sustained network dynamics. The signal processing functions of the dynamic visual and default mode network changes explored in this study are unknown but may be elucidated through further investigation.


Subject(s)
Brain/physiology , Cognitive Aging/physiology , Decision Making/physiology , Adult , Aged , Electrocorticography , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
11.
Hum Brain Mapp ; 39(10): 4032-4042, 2018 10.
Article in English | MEDLINE | ID: mdl-29962111

ABSTRACT

Little is known about how language functional MRI (fMRI) is executed in clinical practice in spite of its widespread use. Here we comprehensively documented its execution in surgical planning in epilepsy. A questionnaire focusing on cognitive design, image acquisition, analysis and interpretation, and practical considerations was developed. Individuals responsible for collecting, analyzing, and interpreting clinical language fMRI data at 63 epilepsy surgical programs responded. The central finding was of marked heterogeneity in all aspects of fMRI. Most programs use multiple tasks, with a fifth routinely using 2, 3, 4, or 5 tasks with a modal run duration of 5 min. Variants of over 15 protocols are in routine use with forms of noun-verb generation, verbal fluency, and semantic decision-making used most often. Nearly all aspects of data acquisition and analysis vary markedly. Neither of the two best-validated protocols was used by more than 10% of respondents. Preprocessing steps are broadly consistent across sites, language-related blood flow is most often identified using general linear modeling (76% of respondents), and statistical thresholding typically varies by patient (79%). The software SPM is most often used. fMRI programs inconsistently include input from experts with all required skills (imaging, cognitive assessment, MR physics, statistical analysis, and brain-behavior relationships). These data highlight marked gaps between the evidence supporting fMRI and its clinical application. Teams performing language fMRI may benefit from evaluating practice with reference to the best-validated protocols to date and ensuring individuals trained in all aspects of fMRI are involved to optimize patient care.


Subject(s)
Brain Mapping/standards , Clinical Protocols/standards , Epilepsy/surgery , Language Tests , Language , Magnetic Resonance Imaging/standards , Neurosurgical Procedures/methods , Preoperative Care/methods , Research Design/standards , Adult , Brain Mapping/methods , Brain Mapping/statistics & numerical data , Child , Humans , Magnetic Resonance Imaging/methods , Neurosurgical Procedures/statistics & numerical data , Preoperative Care/statistics & numerical data , Research Design/statistics & numerical data
12.
Hum Brain Mapp ; 39(7): 2777-2785, 2018 07.
Article in English | MEDLINE | ID: mdl-29528160

ABSTRACT

The goal of this study was to document current clinical practice and report patient outcomes in presurgical language functional MRI (fMRI) for epilepsy surgery. Epilepsy surgical programs worldwide were surveyed as to the utility, implementation, and efficacy of language fMRI in the clinic; 82 programs responded. Respondents were predominantly US (61%) academic programs (85%), and evaluated adults (44%), adults and children (40%), or children only (16%). Nearly all (96%) reported using language fMRI. Surprisingly, fMRI is used to guide surgical margins (44% of programs) as well as lateralize language (100%). Sites using fMRI for localization most often use a distance margin around activation of 10mm. While considered useful, 56% of programs reported at least one instance of disagreement with other measures. Direct brain stimulation typically confirmed fMRI findings (74%) when guiding margins, but instances of unpredicted decline were reported by 17% of programs and 54% reported unexpected preservation of function. Programs reporting unexpected decline did not clearly differ from those which did not. Clinicians using fMRI to guide surgical margins do not typically map known language-critical areas beyond Broca's and Wernicke's. This initial data shows many clinical teams are confident using fMRI not only for language lateralization but also to guide surgical margins. Reported cases of unexpected language preservation when fMRI activation is resected, and cases of language decline when it is not, emphasize a critical need for further validation. Comprehensive studies comparing commonly-used fMRI paradigms to predict stimulation mapping and post-surgical language decline remain of high importance.


Subject(s)
Brain Mapping/statistics & numerical data , Epilepsy/surgery , Language , Magnetic Resonance Imaging/statistics & numerical data , Neurosurgical Procedures/statistics & numerical data , Outcome Assessment, Health Care/statistics & numerical data , Preoperative Care/statistics & numerical data , Humans
14.
Epilepsia ; 59(11): 2075-2085, 2018 11.
Article in English | MEDLINE | ID: mdl-30187919

ABSTRACT

OBJECTIVE: Studies of infraslow amplitude modulations (<0.15 Hz) of band power time series suggest that these envelope correlations may form a basis for distant spatial coupling in the brain. In this study, we sought to determine how infraslow relationships are affected by antiepileptic drug (AED) taper, time of day, and seizure. METHODS: We studied intracranial electroencephalographic (icEEG) data collected from 13 medically refractory adult epilepsy patients who underwent monitoring at Yale-New Haven Hospital. We estimated the magnitude-squared coherence (MSC) at <0.15 Hz of traditional EEG frequency band power time series for all electrode contact pairs to quantify infraslow envelope correlations between them. We studied, first, hour-long background icEEG epochs before and after AED taper to understand the effect of taper. Second, we analyzed the entire record for each patient to study the effect of time of day. Finally, for each patient, we reviewed the clinical record to find all seizures that were at least 6 hours removed from other seizures and analyzed infraslow envelope MSC before and after them. RESULTS: Infraslow envelope MSC increased slightly, but significantly, after AED taper, and increased on average during the night and decreased during the day. It was also increased significantly in all frequency bands up to 3 hours preseizure and 1 hour postseizure as compared to background icEEG (61 seizures studied). These changes occurred for both daytime and nighttime seizures (28 daytime, 33 nighttime). Interestingly, there was significant spatial variability to these changes, with the seizure onset area peaking at 3 hours preseizure, then showing progressive desynchronization from 3 hours preseizure to 1 hour postseizure. SIGNIFICANCE: Infraslow envelope analysis may be used to understand long-term changes over the course of icEEG monitoring, provide unique insight into interictal electrophysiological changes related to ictogenesis, and contribute to the development of novel seizure forecasting algorithms.


Subject(s)
Brain Mapping , Brain Waves/physiology , Drug Resistant Epilepsy/physiopathology , Electrocorticography , Seizures/physiopathology , Adult , Anticonvulsants/therapeutic use , Brain Waves/drug effects , Drug Resistant Epilepsy/drug therapy , Female , Humans , Male , Middle Aged , Retrospective Studies , Signal Processing, Computer-Assisted , Time Factors , Young Adult
15.
Ann Neurol ; 80(1): 35-45, 2016 07.
Article in English | MEDLINE | ID: mdl-27129611

ABSTRACT

OBJECTIVE: Aberrant glutamate and γ-aminobutyric acid (GABA) neurotransmission contribute to seizure generation and the epileptic state. However, whether levels of these neurochemicals are abnormal in epileptic patients is unknown. Here, we report on interictal levels of glutamate, glutamine, and GABA in epilepsy patients at seizure onset and nonepileptic sites, cortical lesions, and from patients with poorly localized neocortical epilepsies. METHODS: Subjects (n = 79) were medically refractory epilepsy patients undergoing intracranial electroencephalogram evaluation. Microdialysis probes (n = 125) coupled to depth electrodes were implanted within suspected seizure onset sites and microdialysis samples were obtained during interictal periods. Glutamate, glutamine, and GABA were measured using high-performance liquid chromatography. Probe locations were subsequently classified by consensus of expert epileptologists. RESULTS: Glutamate levels were elevated in epileptogenic (p = 0.03; n = 7), nonlocalized (p < 0.001), and lesional cortical sites (p < 0.001) when compared to nonepileptogenic cortex. Glutamate was also elevated in epileptogenic (p < 0.001) compared to nonepileptogenic hippocampus. There were no statistical differences in GABA or glutamine, although GABA levels showed high variability across patients and groups. INTERPRETATION: Our findings indicate that chronically elevated extracellular glutamate is a common pathological feature among epilepsies with different etiology. Contrary to our predictions, GABA and glutamine levels were not decreased in any of the measured areas. Whereas variability in GABA levels may in part be attributed to the use of GABAergic antiepileptic drugs, the stability in glutamine across patient groups indicate that extracellular glutamine levels are under tighter metabolic regulation than previously thought. Ann Neurol 2016;80:35-45.


Subject(s)
Cerebral Cortex/metabolism , Drug Resistant Epilepsy/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Hippocampus/metabolism , Microdialysis , gamma-Aminobutyric Acid/metabolism , Adolescent , Adult , Child , Electrodes, Implanted , Electroencephalography , Female , Humans , Male , Middle Aged , Young Adult
16.
Epilepsia ; 57(2): 288-97, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26749134

ABSTRACT

OBJECTIVE: The effect of electrical stimulation on brain glutamate release in humans is unknown. Glutamate is elevated at baseline in the epileptogenic hippocampus of patients with refractory epilepsy, and increases during spontaneous seizures. We examined the effect of 50 Hz stimulation on glutamate release and its relationship to interictal levels in the hippocampus of patients with epilepsy. In addition, we measured basal and stimulated glutamate levels in a subset of these patients where stimulation elicited a seizure. METHODS: Subjects (n = 10) were patients with medically refractory epilepsy who were undergoing intracranial electroencephalography (EEG) evaluation in an epilepsy monitoring unit. Electrical stimulation (50 Hz) was delivered through implanted hippocampal electrodes (n = 11), and microdialysate samples were collected every 2 min. Basal glutamate, changes in glutamate efflux with stimulation, and the relationships between peak stimulation-associated glutamate concentrations, basal zero-flow levels, and stimulated seizures were examined. RESULTS: Stimulation of epileptic hippocampi in patients with refractory epilepsy caused increases in glutamate efflux (p = 0.005, n = 10), and 4 of ten patients experienced brief stimulated seizures. Stimulation-induced increases in glutamate were not observed during the evoked seizures, but rather were related to the elevation in interictal basal glutamate (R(2) = 0.81, p = 0.001). The evoked-seizure group had lower basal glutamate levels than the no-seizure group (p = 0.04), with no stimulation-induced change in glutamate efflux (p = 0.47, n = 4). Conversely, increased glutamate was observed following stimulation in the no-seizure group (p = 0.005, n = 7). Subjects with an atrophic hippocampus had higher basal glutamate levels (p = 0.03, n = 7) and higher stimulation-induced glutamate efflux. SIGNIFICANCE: Electrical stimulation of the epileptic hippocampus either increased extracellular glutamate efflux or induced seizures. The magnitude of stimulated glutamate increase was related to elevation in basal interictal glutamate, suggesting a common mechanism, possibly impaired glutamate metabolism. Divergent mechanisms may exist for seizure induction and increased glutamate in patients with epilepsy. These data highlight the potential risk of 50 Hz stimulation in patients with epilepsy.


Subject(s)
Drug Resistant Epilepsy/metabolism , Electric Stimulation , Glutamic Acid/metabolism , Hippocampus/metabolism , Seizures/metabolism , Adolescent , Adult , Atrophy , Drug Resistant Epilepsy/physiopathology , Electrocorticography , Electrodes, Implanted , Electroencephalography , Extracellular Space/metabolism , Female , Hippocampus/pathology , Hippocampus/physiopathology , Humans , Male , Microdialysis , Middle Aged , Seizures/physiopathology , Young Adult
17.
J Neurophysiol ; 114(2): 1248-54, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26084904

ABSTRACT

A widely accepted view is that wakefulness is a state in which the entire cortical mantle is persistently activated, and therefore desynchronized. Consequently, the EEG is dominated by low-amplitude, high-frequency fluctuations. This view is currently under revision because the 1-4 Hz delta rhythm is often evident during "quiet" wakefulness in rodents and nonhuman primates. Here we used intracranial EEG recordings to assess the occurrence of delta rhythm in 18 awake human beings. Our recordings reveal rhythmic delta during wakefulness at 10% of all recording sites. Delta rhythm could be observed in a single cortical lobe or in multiple lobes. Sites with high delta could flip between high and low delta power or could be in a persistently high delta state. Finally, these sites were rarely identified as the sites of seizure onset. Thus rhythmic delta can dominate the background operation and activity of some neocortical circuits in awake human beings.


Subject(s)
Cerebral Cortex/physiology , Delta Rhythm/physiology , Wakefulness/physiology , Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/surgery , Electrocorticography , Electrodes, Implanted , Epilepsy/physiopathology , Epilepsy/surgery , Female , Humans , Male , Middle Aged , Seizures/physiopathology , Seizures/surgery , Young Adult
18.
Epilepsy Behav ; 52(Pt A): 19-24, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26398592

ABSTRACT

This study examined the ability of an asymmetrical dot location memory test (Brown Location Test, BLT) and two verbal memory tests (Verbal Selective Reminding Test (VSRT) and California Verbal Learning Test, Second Edition (CVLT-II)) to correctly lateralize left (LTLE) or right (RTLE) mesial temporal lobe epilepsy that was confirmed with video-EEG. Subjects consisted of 16 patients with medically refractory RTLE and 13 patients with medically refractory LTLE who were left hemisphere language dominant. Positive predictive values for lateralizing TLE correctly were 87.5% for the BLT, 72.7% for the VSRT, and 80% for the CVLT-II. Binary logistic regression indicated that the BLT alone correctly classified 76.9% of patients with left temporal lobe epilepsy and 87.5% of patients with right temporal lobe epilepsy. Inclusion of the verbal memory tests improved this to 92.3% of patients with left temporal lobe epilepsy and 100% correct classification of patients with right temporal lobe epilepsy. Though of a limited sample size, this study suggests that the BLT alone provides strong laterality information which improves with the addition of verbal memory tests.


Subject(s)
Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/psychology , Functional Laterality , Space Perception , Spatial Memory , Adolescent , Adult , Aged , Drug Resistant Epilepsy/surgery , Electroencephalography , Epilepsy, Temporal Lobe/surgery , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Predictive Value of Tests , Verbal Learning , Wechsler Scales , Young Adult
19.
Neurosurg Focus ; 38(6): E10, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26030698

ABSTRACT

When drug-resistant epilepsy is poorly localized or surgical resection is contraindicated, current neurostimulation strategies such as deep brain stimulation and vagal nerve stimulation can palliate the frequency or severity of seizures. However, despite medical and neuromodulatory therapy, a significant proportion of patients continue to experience disabling seizures that impair awareness, causing disability and risking injury or sudden unexplained death. We propose a novel strategy in which neuromodulation is used not only to reduce seizures but also to ameliorate impaired consciousness when the patient is in the ictal and postictal states. Improving or preventing alterations in level of consciousness may have an effect on morbidity (e.g., accidents, drownings, falls), risk for death, and quality of life. Recent studies may have elucidated underlying networks and mechanisms of impaired consciousness and yield potential novel targets for neuromodulation. The feasibility, benefits, and pitfalls of potential deep brain stimulation targets are illustrated in human and animal studies involving minimally conscious/vegetative states, movement disorders, depth of anesthesia, sleep-wake regulation, and epilepsy. We review evidence that viable therapeutic targets for impaired consciousness associated with seizures may be provided by key nodes of the consciousness system in the brainstem reticular activating system, hypothalamus, basal ganglia, thalamus, and basal forebrain.


Subject(s)
Brain/physiology , Consciousness/physiology , Deep Brain Stimulation/methods , Epilepsy/physiopathology , Epilepsy/therapy , Humans
20.
Epilepsia ; 55(12): 1986-95, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25470216

ABSTRACT

OBJECTIVES: To study the incidence, spatial distribution, and signal characteristics of high frequency oscillations (HFOs) outside the epileptic network. METHODS: We included patients who underwent invasive evaluations at Yale Comprehensive Epilepsy Center from 2012 to 2013, had all major lobes sampled, and had localizable seizure onsets. Segments of non-rapid eye movement (NREM) sleep prior to the first seizure were analyzed. We implemented a semiautomated process to analyze oscillations with peak frequencies >80 Hz (ripples 80-250 Hz; fast ripples 250-500 Hz). A contact location was considered epileptic if it exhibited epileptiform discharges during the intracranial evaluation or was involved ictally within 5 s of seizure onset; otherwise it was considered nonepileptic. RESULTS: We analyzed recordings from 1,209 electrode contacts in seven patients. The nonepileptic contacts constituted 79.1% of the total number of contacts. Ripples constituted 99% of total detections. Eighty-two percent of all HFOs were seen in 45.2% of the nonepileptic contacts (82.1%, 47%, 34.6%, and 34% of the occipital, parietal, frontal, and temporal nonepileptic contacts, respectively). The following sublobes exhibited physiologic HFOs in all patients: Perirolandic, basal temporal, and occipital subregions. The ripples from nonepileptic sites had longer duration, higher amplitude, and lower peak frequency than ripples from epileptic sites. A high HFO rate (>1/min) was seen in 110 nonepileptic contacts, of which 68.2% were occipital. Fast ripples were less common, seen in nonepileptic parietooccipital regions only in two patients and in the epileptic mesial temporal structures. CONCLUSIONS: There is consistent occurrence of physiologic HFOs over vast areas of the neocortex outside the epileptic network. HFOs from nonepileptic regions were seen in the occipital lobes and in the perirolandic region in all patients. Although duration of ripples and peak frequency of HFOs are the most effective measures in distinguishing pathologic from physiologic events, there was significant overlap between the two groups.


Subject(s)
Brain Mapping , Brain Waves/physiology , Brain/physiopathology , Epilepsy/pathology , Epilepsy/physiopathology , Adolescent , Adult , Biological Clocks/physiology , Child , Electroencephalography , Female , Humans , Male , ROC Curve , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL