Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Emerg Infect Dis ; 30(1): 50-57, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040665

ABSTRACT

The number of highly pathogenic avian influenza (HPAI) H5-related infections and deaths of wild birds in Europe was high during October 1, 2020-September 30, 2022. To quantify deaths among wild species groups with known susceptibility for HPAI H5 during those epidemics, we collected and recorded mortality data of wild birds in the Netherlands. HPAI virus infection was reported in 51 bird species. The species with the highest numbers of reported dead and infected birds varied per epidemic year; in 2020-21, they were within the Anatidae family, in particular barnacle geese (Branta leucopsis) and in 2021-22, they were within the sea bird group, particularly Sandwich terns (Thalasseus sandvicensis) and northern gannet (Morus bassanus). Because of the difficulty of anticipating and modeling the future trends of HPAI among wild birds, we recommend monitoring live and dead wild birds as a tool for surveillance of the changing dynamics of HPAI.


Subject(s)
Charadriiformes , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Animals , Influenza in Birds/epidemiology , Netherlands/epidemiology , Animals, Wild , Birds , Ducks
2.
Emerg Infect Dis ; 30(8): 1552-1561, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941965

ABSTRACT

Since 1998, notifiable bluetongue virus (BTV) serotypes 1-4, 6, 8, 9, 11, and 16 have been reported in Europe. In August 2006, a bluetongue (BT) outbreak caused by BTV serotype 8 began in northwestern Europe. The Netherlands was declared BT-free in February 2012, and annual monitoring continued. On September 3, 2023, typical BT clinical manifestations in sheep were notified to the Netherlands Food and Product Safety Consumer Authority. On September 6, we confirmed BTV infection through laboratory diagnosis; notifications of clinical signs in cattle were also reported. We determined the virus was serotype 3 by whole-genome sequencing. Retrospective analysis did not reveal BTV circulation earlier than September. The virus source and introduction route into the Netherlands remains unknown. Continuous monitoring and molecular diagnostic testing of livestock will be needed to determine virus spread, and new prevention strategies will be required to prevent BTV circulation within the Netherlands and Europe.


Subject(s)
Bluetongue virus , Bluetongue , Serogroup , Bluetongue virus/classification , Bluetongue virus/genetics , Bluetongue virus/isolation & purification , Bluetongue/epidemiology , Bluetongue/virology , Animals , Netherlands/epidemiology , Sheep , Cattle , Disease Outbreaks , Phylogeny , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , History, 21st Century , Retrospective Studies
3.
Occup Environ Med ; 78(12): 893-899, 2021 12.
Article in English | MEDLINE | ID: mdl-34330815

ABSTRACT

OBJECTIVE: Unprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding transmission to humans and initiated intensive environmental investigations to assess occupational and environmental exposure. METHODS: Air sampling was performed at infected Dutch mink farms, at farm premises and at nearby residential sites. A range of other environmental samples were collected from minks' housing units, including bedding materials. SARS-CoV-2 RNA was analysed in all samples by quantitative PCR. RESULTS: Inside the farms, considerable levels of SARS-CoV-2 RNA were found in airborne dust, especially in personal inhalable dust samples (approximately 1000-10 000 copies/m3). Most of the settling dust samples tested positive for SARS-CoV-2 RNA (82%, 75 of 92). SARS-CoV-2 RNA was not detected in outdoor air samples, except for those collected near the entrance of the most recently infected farm. Many samples of minks' housing units and surfaces contained SARS-CoV-2 RNA. CONCLUSIONS: Infected mink farms can be highly contaminated with SARS-CoV-2 RNA. This warns of occupational exposure, which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible risk of environmental exposure to nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequencing analyses showing mink-to-human transmission among farm workers, but no indications of direct zoonotic transmission events to nearby communities.


Subject(s)
Dust/analysis , Environmental Exposure , Farms , Mink/virology , Occupational Exposure , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Animals , Humans , Netherlands/epidemiology
4.
Emerg Infect Dis ; 24(6): 1127-1129, 2018 06.
Article in English | MEDLINE | ID: mdl-29774845

ABSTRACT

A Brucella suis biovar 1 infection was diagnosed in a dog without typical exposure risks, but the dog had been fed a raw meat-based diet (hare carcasses imported from Argentina). Track and trace investigations revealed that the most likely source of infection was the dog's raw meat diet.


Subject(s)
Animal Feed/microbiology , Brucella suis , Brucellosis/veterinary , Dog Diseases/epidemiology , Dog Diseases/microbiology , Meat/microbiology , Animals , Brucella suis/classification , Brucella suis/genetics , Dog Diseases/transmission , Dogs , Genes, Bacterial , Genotype , Humans , Multilocus Sequence Typing , Netherlands/epidemiology , Phylogeny
6.
Viruses ; 16(4)2024 04 17.
Article in English | MEDLINE | ID: mdl-38675966

ABSTRACT

A devastating bluetongue (BT) epidemic caused by bluetongue virus serotype 3 (BTV-3) has spread throughout most of the Netherlands within two months since the first infection was officially confirmed in the beginning of September 2023. The epidemic comes with unusually strong suffering of infected cattle through severe lameness, often resulting in mortality or euthanisation for welfare reasons. In total, tens of thousands of sheep have died or had to be euthanised. By October 2023, more than 2200 locations with ruminant livestock were officially identified to be infected with BTV-3, and additionally, ruminants from 1300 locations were showing BTV-associated clinical symptoms (but not laboratory-confirmed BT). Here, we report on the spatial spread and dynamics of this BT epidemic. More specifically, we characterized the distance-dependent intensity of the between-holding transmission by estimating the spatial transmission kernel and by comparing it to transmission kernels estimated earlier for BTV-8 transmission in Northwestern Europe in 2006 and 2007. The 2023 BTV-3 kernel parameters are in line with those of the transmission kernel estimated previously for the between-holding spread of BTV-8 in Europe in 2007. The 2023 BTV-3 transmission kernel has a long-distance spatial range (across tens of kilometres), evidencing that in addition to short-distance dispersal of infected midges, other transmission routes such as livestock transports probably played an important role.


Subject(s)
Bluetongue virus , Bluetongue , Epidemics , Serogroup , Animals , Bluetongue/epidemiology , Bluetongue/transmission , Bluetongue/virology , Bluetongue virus/classification , Netherlands/epidemiology , Sheep , Cattle , Cattle Diseases/virology , Cattle Diseases/epidemiology , Cattle Diseases/transmission
7.
Pathogens ; 13(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38668235

ABSTRACT

This study describes clinical manifestations of highly pathogenic avian influenza (HPAI) H5N1, H5N8 and H5N6 outbreaks between 2014 and 2018 and 2020 and 2022 in the Netherlands for different poultry types and age groups. Adult duck (breeder) farms and juvenile chicken (broiler and laying pullet) farms were not diagnosed before 2020. Outbreaks in ducks decreased in 2020-2022 vs. 2014-2018, but increased for meat-type poultry. Neurological, locomotor and reproductive tract signs were often observed in ducks, whereas laying- and meat-type poultry more often showed mucosal membrane and skin signs, including cyanosis and hemorrhagic conjunctiva. Juveniles (chickens and ducks) showed neurological and locomotor signs more often than adults. Diarrhea occurred more often in adult chickens and juvenile ducks. Mortality increased exponentially within four days before notification in chickens and ducks, with a more fluctuating trend in ducks and meat-type poultry than in layers. For ducks, a mortality ratio (MR) > 3, compared to the average mortality of the previous week, was reached less often than in chickens. A lower percentage of laying flocks with MR > 3 was found for 2020-2022 vs. 2014-2018, but without significant differences in clinical signs. This study provides a basis for improvements in mortality- and clinical-sign-based early warning criteria, especially for juvenile chickens and ducks.

8.
Pathogens ; 12(2)2023 01 20.
Article in English | MEDLINE | ID: mdl-36839440

ABSTRACT

Wild carnivore species infected with highly pathogenic avian influenza (HPAI) virus subtype H5N1 during the 2021-2022 outbreak in the Netherlands included red fox (Vulpes vulpes), polecat (Mustela putorius), otter (Lutra lutra), and badger (Meles meles). Most of the animals were submitted for testing because they showed neurological signs. In this study, the HPAI H5N1 virus was detected by PCR and/or immunohistochemistry in 11 animals and was primarily present in brain tissue, often associated with a (meningo) encephalitis in the cerebrum. In contrast, the virus was rarely detected in the respiratory tract and intestinal tract and associated lesions were minimal. Full genome sequencing followed by phylogenetic analysis demonstrated that these carnivore viruses were related to viruses detected in wild birds in the Netherlands. The carnivore viruses themselves were not closely related, and the infected carnivores did not cluster geographically, suggesting that they were infected separately. The mutation PB2-E627K was identified in most carnivore virus genomes, providing evidence for mammalian adaptation. This study showed that brain samples should be included in wild life surveillance programs for the reliable detection of the HPAI H5N1 virus in mammals. Surveillance of the wild carnivore population and notification to the Veterinary Authority are important from a one-heath perspective, and instrumental to pandemic preparedness.

9.
Emerg Infect Dis ; 18(7): 1065-71, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22709656

ABSTRACT

Infections with Schmallenberg virus (SBV) are associated with congenital malformations in ruminants. Because reporting of suspected cases only could underestimate the true rate of infection, we conducted a seroprevalence study in the Netherlands to detect past exposure to SBV among dairy cattle. A total of 1,123 serum samples collected from cattle during November 2011-January 2012 were tested for antibodies against SBV by using a virus neutralization test; seroprevalence was 72.5%. Seroprevalence was significantly higher in the central-eastern part of the Netherlands than in the northern and southern regions (p<0.001). In addition, high (70%-100%) within-herd seroprevalence was observed in 2 SBV-infected dairy herds and 2 SBV-infected sheep herds. No significant differences were found in age-specific prevalence of antibodies against SBV, which is an indication that SBV is newly arrived in the country.


Subject(s)
Antibodies, Viral/blood , Bunyaviridae Infections/veterinary , Cattle Diseases/epidemiology , Communicable Diseases, Emerging/veterinary , Orthobunyavirus/immunology , Animals , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/virology , Cattle , Cattle Diseases/virology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Dairying , Netherlands/epidemiology , Seasons , Seroepidemiologic Studies
10.
Viruses ; 14(8)2022 08 11.
Article in English | MEDLINE | ID: mdl-36016375

ABSTRACT

SARS-CoV-2 outbreaks on 69 Dutch mink farms in 2020 were studied to identify risk factors for virus introduction and transmission and to improve surveillance and containment measures. Clinical signs, laboratory test results, and epidemiological aspects were investigated, such as the date and reason of suspicion, housing, farm size and distances, human contact structure, biosecurity measures, and presence of wildlife, pets, pests, and manure management. On seven farms, extensive random sampling was performed, and age, coat color, sex, and clinical signs were recorded. Mild to severe respiratory signs and general diseases such as apathy, reduced feed intake, and increased mortality were detected on 62/69 farms. Throat swabs were more likely to result in virus detection than rectal swabs. Clinical signs differed between virus clusters and were more severe for dark-colored mink, males, and animals infected later during the year. Geographical clustering was found for one virus cluster. Shared personnel could explain some cases, but other transmission routes explaining farm-to-farm spread were not elucidated. An early warning surveillance system, strict biosecurity measures, and a (temporary) ban on mink farming and vaccinating animals and humans can contribute to reducing the risks of the virus spreading and acquisition of potential mutations relevant to human and animal health.


Subject(s)
COVID-19 , Farms , Mink , SARS-CoV-2 , Animals , COVID-19/epidemiology , COVID-19/veterinary , Female , Male , Mink/virology , Netherlands/epidemiology , Risk Factors , SARS-CoV-2/isolation & purification
11.
Transbound Emerg Dis ; 69(5): 3001-3007, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34080762

ABSTRACT

Animals like mink, cats and dogs are susceptible to SARS-CoV-2 infection. In the Netherlands, 69 out of 127 mink farms were infected with SARS-CoV-2 between April and November 2020 and all mink on infected farms were culled after SARS-CoV-2 infection to prevent further spread of the virus. On some farms, (feral) cats and dogs were present. This study provides insight into the prevalence of SARS-CoV-2-positive cats and dogs in 10 infected mink farms and their possible role in transmission of the virus. Throat and rectal swabs of 101 cats (12 domestic and 89 feral cats) and 13 dogs of 10 farms were tested for SARS-CoV-2 using PCR. Serological assays were performed on serum samples from 62 adult cats and all 13 dogs. Whole Genome Sequencing was performed on one cat sample. Cat-to-mink transmission parameters were estimated using data from all 10 farms. This study shows evidence of SARS-CoV-2 infection in 12 feral cats and 2 dogs. Eleven cats (18%) and two dogs (15%) tested serologically positive. Three feral cats (3%) and one dog (8%) tested PCR-positive. The sequence generated from the cat throat swab clustered with mink sequences from the same farm. The calculated rate of mink-to-cat transmission showed that cats on average had a chance of 12% (95%CI 10%-18%) of becoming infected by mink, assuming no cat-to-cat transmission. As only feral cats were infected it is most likely that infections in cats were initiated by mink, not by humans. Whether both dogs were infected by mink or humans remains inconclusive. This study presents one of the first reports of interspecies transmission of SARS-CoV-2 that does not involve humans, namely mink-to-cat transmission, which should also be considered as a potential risk for spread of SARS-CoV-2.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , Animals, Wild , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology , Cats , Dog Diseases/epidemiology , Dogs , Farms , Humans , Mink , SARS-CoV-2
12.
Emerg Infect Dis ; 17(4): 668-75, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21470457

ABSTRACT

Q fever is a zoonosis caused by the bacterium Coxiella burnetii. One of the largest reported outbreaks of Q fever in humans occurred in the Netherlands starting in 2007; epidemiologic investigations identified small ruminants as the source. To determine the genetic background of C. burnetii in domestic ruminants responsible for the human Q fever outbreak, we genotyped 126 C. burnetii-positive samples from ruminants by using a 10-loci multilocus variable-number tandem-repeat analyses panel and compared them with internationally known genotypes. One unique genotype predominated in dairy goat herds and 1 sheep herd in the human Q fever outbreak area in the south of the Netherlands. On the basis of 4 loci, this genotype is similar to a human genotype from the Netherlands. This finding strengthens the probability that this genotype of C. burnetii is responsible for the human Q fever epidemic in the Netherlands.


Subject(s)
Coxiella burnetii/physiology , Disease Outbreaks , Goat Diseases/epidemiology , Molecular Epidemiology , Q Fever/veterinary , Ruminants/microbiology , Sheep Diseases/epidemiology , Animals , Bacterial Typing Techniques , Coxiella burnetii/genetics , Genotype , Goats , Humans , Multilocus Sequence Typing , Netherlands/epidemiology , Phylogeny , Q Fever/epidemiology , Sheep
13.
Nat Commun ; 12(1): 6802, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815406

ABSTRACT

In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and humans on farms. High number of farm infections (68/126) in minks and farm workers (>50% of farms) were detected, with limited community spread. Three of five initial introductions of SARS-CoV-2 led to subsequent spread between mink farms until November 2020. Viruses belonging to the largest cluster acquired an amino acid substitution in the receptor binding domain of the Spike protein (position 486), evolved faster and spread longer and more widely. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combining genetic information with epidemiological information when investigating outbreaks at the animal-human interface.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Evolution, Molecular , Farms , Mink/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Amino Acid Sequence , Animal Diseases/epidemiology , Animal Diseases/transmission , Animal Diseases/virology , Animals , Bayes Theorem , Disease Outbreaks , Humans , Netherlands/epidemiology , Phylogeny , SARS-CoV-2/isolation & purification , Sequence Analysis, Protein , Spike Glycoprotein, Coronavirus/classification , Spike Glycoprotein, Coronavirus/genetics
14.
Tijdschr Diergeneeskd ; 135(20): 750-6, 2010 Oct 15.
Article in Dutch | MEDLINE | ID: mdl-21213448

ABSTRACT

In the Spring of 2009, a veterinarian reported suspected classical swine fever (CSF) on a multiplier pig farm in the southern part of The Netherlands (close to the Belgian border). Over a 5-week period there had been a number of sick sows and an excessively high percentage of stillborn and preterm piglets. Sick animals were treated with anti-inflammatory drugs and antibiotics, but did not respond as well as anticipated. A visiting specialist team from the Food Safety Authority could not exclude CSF as the cause of the clinical problems and sent blood samples to the reference laboratory in Lelystad for a PCR test on CSF antigen. Fortunately, test results obtained 6 hours later were negative for CSF, and the disease control measures were lifted. It later appeared that porcine reproductive and respiratory syndrome (PRRSV) might have been responsible for the problems. But what if CSF had caused the clinical problems? A CSF-transmission model was used to simulate CSF outbreaks dependent on the duration of the high-risk period (HRP). As the duration of the HRP increased, there was an exponential growth in the number of pig farms infected during this period. Simulations also showed that with a longer HRP, the virus spread over greater distances from the source herd. It was also investigated whether a possible CSF outbreak could be detected on the basis of an increased mortality and hence increased number of cadavers sent to a rendering plant. However, the calculated mortality incidence was not sensitive enough to serve as an alarm signal. It is recommended that CSF-exclusion diagnostics be used much earlier in similar clinical situations on pig farms.


Subject(s)
Porcine Reproductive and Respiratory Syndrome/epidemiology , Animals , Animals, Newborn , Classical Swine Fever/diagnosis , Classical Swine Fever/epidemiology , Classical Swine Fever/transmission , Computer Simulation , Diagnosis, Differential , Disease Outbreaks/veterinary , Female , Male , Porcine Reproductive and Respiratory Syndrome/diagnosis , Swine , Swine Diseases
15.
Article in English | MEDLINE | ID: mdl-30805312

ABSTRACT

Sequence-based typing of Francisella tularensis has led to insights in the evolutionary developments of tularemia. In Europe, two major basal clades of F. tularensis subsp. holarctica exist, with a distinct geographical distribution. Basal clade B.6 is primarily found in Western Europe, while basal clade B.12 occurs predominantly in the central and eastern parts of Europe. There are indications that tularemia is geographically expanding and that strains from the two clades might differ in pathogenicity, with basal clade B.6 strains being potentially more virulent than basal clade B.12. This study provides information on genotypes detected in the Netherlands during 2011-2017. Data are presented for seven autochthonous human cases and for 29 European brown hares (Lepus europaeus) with laboratory confirmed tularemia. Associated disease patterns are described for 25 European brown hares which underwent post-mortem examination. The basal clades B.6 and B.12 are present both in humans and in European brown hares in the Netherlands, with a patchy geographical distribution. For both genotypes the main pathological findings in hares associated with tularemia were severe (sub)acute necrotizing hepatitis and splenitis as well as necrotizing lesions and hemorrhages in several other organs. Pneumonia was significantly more common in the B.6 than in the B.12 cases. In conclusion, the two major basal clades present in different parts in Europe are both present in the Netherlands. In hares found dead, both genotypes were associated with severe acute disease affecting multiple organs. Hepatitis and splenitis were common pathological findings in hares infected with either genotype, but pneumonia occurred significantly more frequently in hares infected with the B.6 genotype compared to hares infected with the B.12 genotype.


Subject(s)
Francisella tularensis/classification , Francisella tularensis/isolation & purification , Genetic Variation , Hares , Phylogeography , Tularemia/microbiology , Tularemia/veterinary , Animals , Francisella tularensis/genetics , Genotype , Humans , Molecular Typing , Netherlands , Tularemia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL