Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Exp Biol ; 220(Pt 20): 3751-3762, 2017 10 15.
Article in English | MEDLINE | ID: mdl-29046418

ABSTRACT

To escape after taking a blood meal, a mosquito must exert forces sufficiently high to take off when carrying a load roughly equal to its body weight, while simultaneously avoiding detection by minimizing tactile signals exerted on the host's skin. We studied this trade-off between escape speed and stealth in the malaria mosquito Anopheles coluzzii using 3D motion analysis of high-speed stereoscopic videos of mosquito take-offs and aerodynamic modeling. We found that during the push-off phase, mosquitoes enhanced take-off speed using aerodynamic forces generated by the beating wings in addition to leg-based push-off forces, whereby wing forces contributed 61% of the total push-off force. Exchanging leg-derived push-off forces for wing-derived aerodynamic forces allows the animal to reduce peak force production on the host's skin. By slowly extending their long legs throughout the push-off, mosquitoes spread push-off forces over a longer time window than insects with short legs, thereby further reducing peak leg forces. Using this specialized take-off behavior, mosquitoes are capable of reaching take-off speeds comparable to those of similarly sized fruit flies, but with weight-normalized peak leg forces that were only 27% of those of the fruit flies. By limiting peak leg forces, mosquitoes possibly reduce the chance of being detected by the host. The resulting combination of high take-off speed and low tactile signals on the host might help increase the mosquito's success in escaping from blood-hosts, which consequently also increases the chance of transmitting vector-borne diseases, such as malaria, to future hosts.


Subject(s)
Anopheles/physiology , Flight, Animal , Animals , Biomechanical Phenomena , Escape Reaction , Female , Videotape Recording
2.
Bull Entomol Res ; 95(4): 341-7, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16048682

ABSTRACT

Development and reproductive success of the solitary egg parasitoid Uscana lariophaga Steffan were examined after development in eggs of the bruchid storage pest Callosobruchus maculatus Fabricius reared at either low or high densities on cowpea seeds and laid at day 1 and 4 of maternal life. Both bruchid larval competition and maternal age negatively affected egg size, but the latter more than the former. Uscana lariophaga reared in small hosts developed slower, were smaller and produced fewer eggs compared to parasitoids reared in large hosts. Fecundity of the parasitoid was heavily influenced by host egg size. This was reflected in the values for the intrinsic rate of increase of U. lariophaga, which differed for wasps that developed in host eggs laid by bruchid females of different age. Wasps allocated marginally more female offspring to larger hosts.


Subject(s)
Coleoptera/parasitology , Hymenoptera/physiology , Oviposition/physiology , Animals , Fabaceae/parasitology , Female , Fertility/physiology , Host-Parasite Interactions , Male , Ovum/parasitology , Population Density , Seeds/parasitology , Sex Ratio
SELECTION OF CITATIONS
SEARCH DETAIL