Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 111(1): 39-47, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38181734

ABSTRACT

Craniofacial phenotyping is critical for both syndrome delineation and diagnosis because craniofacial abnormalities occur in 30% of characterized genetic syndromes. Clinical reports, textbooks, and available software tools typically provide two-dimensional, static images and illustrations of the characteristic phenotypes of genetic syndromes. In this work, we provide an interactive web application that provides three-dimensional, dynamic visualizations for the characteristic craniofacial effects of 95 syndromes. Users can visualize syndrome facial appearance estimates quantified from data and easily compare craniofacial phenotypes of different syndromes. Our application also provides a map of morphological similarity between a target syndrome and other syndromes. Finally, users can upload 3D facial scans of individuals and compare them to our syndrome atlas estimates. In summary, we provide an interactive reference for the craniofacial phenotypes of syndromes that allows for precise, individual-specific comparisons of dysmorphology.


Subject(s)
Face , Software , Humans , Facies , Phenotype , Syndrome
2.
PLoS Genet ; 17(8): e1009695, 2021 08.
Article in English | MEDLINE | ID: mdl-34411106

ABSTRACT

Facial morphology is highly variable, both within and among human populations, and a sizable portion of this variation is attributable to genetics. Previous genome scans have revealed more than 100 genetic loci associated with different aspects of normal-range facial variation. Most of these loci have been detected in Europeans, with few studies focusing on other ancestral groups. Consequently, the degree to which facial traits share a common genetic basis across diverse sets of humans remains largely unknown. We therefore investigated the genetic basis of facial morphology in an East African cohort. We applied an open-ended data-driven phenotyping approach to a sample of 2,595 3D facial images collected on Tanzanian children. This approach segments the face into hierarchically arranged, multivariate features that capture the shape variation after adjusting for age, sex, height, weight, facial size and population stratification. Genome scans of these multivariate shape phenotypes revealed significant (p < 2.5 × 10-8) signals at 20 loci, which were enriched for active chromatin elements in human cranial neural crest cells and embryonic craniofacial tissue, consistent with an early developmental origin of the facial variation. Two of these associations were in highly conserved regions showing craniofacial-specific enhancer activity during embryological development (5q31.1 and 12q21.31). Six of the 20 loci surpassed a stricter threshold accounting for multiple phenotypes with study-wide significance (p < 6.25 × 10-10). Cross-population comparisons indicated 10 association signals were shared with Europeans (seven sharing the same associated SNP), and facilitated fine-mapping of causal variants at previously reported loci. Taken together, these results may point to both shared and population-specific components to the genetic architecture of facial variation.


Subject(s)
Black People/genetics , Face/anatomy & histology , Genome-Wide Association Study/methods , Quantitative Trait Loci , White People/genetics , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Humans , Image Processing, Computer-Assisted , Male , Polymorphism, Single Nucleotide , Tanzania , Young Adult
3.
Development ; 147(18)2020 09 21.
Article in English | MEDLINE | ID: mdl-32958507

ABSTRACT

The FaceBase Consortium was established by the National Institute of Dental and Craniofacial Research in 2009 as a 'big data' resource for the craniofacial research community. Over the past decade, researchers have deposited hundreds of annotated and curated datasets on both normal and disordered craniofacial development in FaceBase, all freely available to the research community on the FaceBase Hub website. The Hub has developed numerous visualization and analysis tools designed to promote integration of multidisciplinary data while remaining dedicated to the FAIR principles of data management (findability, accessibility, interoperability and reusability) and providing a faceted search infrastructure for locating desired data efficiently. Summaries of the datasets generated by the FaceBase projects from 2014 to 2019 are provided here. FaceBase 3 now welcomes contributions of data on craniofacial and dental development in humans, model organisms and cell lines. Collectively, the FaceBase Consortium, along with other NIH-supported data resources, provide a continuously growing, dynamic and current resource for the scientific community while improving data reproducibility and fulfilling data sharing requirements.


Subject(s)
Dental Research/methods , Facial Bones/physiology , Skull/physiology , Animals , Databases, Factual , Humans , Reproducibility of Results , Research Personnel
4.
Hum Mol Genet ; 29(5): 859-863, 2020 03 27.
Article in English | MEDLINE | ID: mdl-31943001

ABSTRACT

Autoimmune vitiligo is a complex disease involving polygenic risk from at least 50 loci previously identified by genome-wide association studies. The objectives of this study were to estimate and compare vitiligo heritability in European-derived patients using both family-based and 'deep imputation' genotype-based approaches. We estimated family-based heritability (h2FAM) by vitiligo recurrence among a total 8034 first-degree relatives (3776 siblings, 4258 parents or offspring) of 2122 unrelated vitiligo probands. We estimated genotype-based heritability (h2SNP) by deep imputation to Haplotype Reference Consortium and the 1000 Genomes Project data in unrelated 2812 vitiligo cases and 37 079 controls genotyped genome wide, achieving high-quality imputation from markers with minor allele frequency (MAF) as low as 0.0001. Heritability estimated by both approaches was exceedingly high; h2FAM = 0.75-0.83 and h2SNP = 0.78. These estimates are statistically identical, indicating there is essentially no remaining 'missing heritability' for vitiligo. Overall, ~70% of h2SNP is represented by common variants (MAF > 0.01) and 30% by rare variants. These results demonstrate that essentially all vitiligo heritable risk is captured by array-based genotyping and deep imputation. These findings suggest that vitiligo may provide a particularly tractable model for investigation of complex disease genetic architecture and predictive aspects of personalized medicine.


Subject(s)
Autoimmune Diseases/genetics , Genetic Predisposition to Disease , Haplotypes , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Vitiligo/genetics , Deep Learning , Family , Female , Gene Frequency , Genome-Wide Association Study , Genotype , Humans , Male , Risk Factors
5.
Am J Hum Genet ; 105(2): 364-372, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31327509

ABSTRACT

Vitiligo is an autoimmune disease that results in patches of depigmented skin and hair. Previous genome-wide association studies (GWASs) of vitiligo have identified 50 susceptibility loci. Variants at the associated loci are generally common and have individually small effects on risk. Most vitiligo cases are "simplex," where there is no family history of vitiligo, though occasional family clustering of vitiligo occurs, and some "multiplex" families report numerous close affected relatives. Here, we investigate whether simplex and multiplex vitiligo comprise different disease subtypes with different underlying genetic etiologies. We developed and compared the performance of several different vitiligo polygenic risk scores derived from GWAS data. By using the best-performing risk score, we find increased polygenic burden of risk alleles identified by GWAS in multiplex vitiligo cases relative to simplex cases. We additionally find evidence of polygenic transmission of common, low-effect-size risk alleles within multiplex-vitiligo-affected families. Our findings strongly suggest that family clustering of vitiligo involves a high burden of the same common, low-effect-size variants that are relevant in simplex cases. We furthermore find that a variant within the major histocompatibility complex (MHC) class II region contributes disproportionately more to risk in multiplex vitiligo cases than in simplex cases, supporting a special role for adaptive immune triggering in the etiology of multiplex cases. We suggest that genetic risk scores can be a useful tool in analyzing the genetic architecture of clinical disease subtypes and identifying subjects with unusual etiologies for further investigation.


Subject(s)
Autoimmune Diseases/pathology , Genes/genetics , Genetic Predisposition to Disease , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Vitiligo/pathology , Alleles , Autoimmune Diseases/genetics , Case-Control Studies , Family , Female , Genome-Wide Association Study , Genotype , Humans , Male , Risk Factors , Vitiligo/genetics
6.
Hum Mol Genet ; 28(20): 3498-3513, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31211845

ABSTRACT

Many immune diseases occur at different rates among people with schizophrenia compared to the general population. Here, we evaluated whether this phenomenon might be explained by shared genetic risk factors. We used data from large genome-wide association studies to compare the genetic architecture of schizophrenia to 19 immune diseases. First, we evaluated the association with schizophrenia of 581 variants previously reported to be associated with immune diseases at genome-wide significance. We identified five variants with potentially pleiotropic effects. While colocalization analyses were inconclusive, functional characterization of these variants provided the strongest evidence for a model in which genetic variation at rs1734907 modulates risk of schizophrenia and Crohn's disease via altered methylation and expression of EPHB4-a gene whose protein product guides the migration of neuronal axons in the brain and the migration of lymphocytes towards infected cells in the immune system. Next, we investigated genome-wide sharing of common variants between schizophrenia and immune diseases using cross-trait LD score regression. Of the 11 immune diseases with available genome-wide summary statistics, we observed genetic correlation between six immune diseases and schizophrenia: inflammatory bowel disease (rg = 0.12 ± 0.03, P = 2.49 × 10-4), Crohn's disease (rg = 0.097 ± 0.06, P = 3.27 × 10-3), ulcerative colitis (rg = 0.11 ± 0.04, P = 4.05 × 10-3), primary biliary cirrhosis (rg = 0.13 ± 0.05, P = 3.98 × 10-3), psoriasis (rg = 0.18 ± 0.07, P = 7.78 × 10-3) and systemic lupus erythematosus (rg = 0.13 ± 0.05, P = 3.76 × 10-3). With the exception of ulcerative colitis, the degree and direction of these genetic correlations were consistent with the expected phenotypic correlation based on epidemiological data. Our findings suggest shared genetic risk factors contribute to the epidemiological association of certain immune diseases and schizophrenia.


Subject(s)
Genetic Predisposition to Disease/genetics , Immune System Diseases/etiology , Immune System Diseases/genetics , Schizophrenia/etiology , Schizophrenia/genetics , Genome-Wide Association Study , Humans , Immune System Diseases/epidemiology , Polymorphism, Single Nucleotide/genetics , Schizophrenia/epidemiology
7.
Genet Med ; 22(10): 1682-1693, 2020 10.
Article in English | MEDLINE | ID: mdl-32475986

ABSTRACT

PURPOSE: Deep phenotyping is an emerging trend in precision medicine for genetic disease. The shape of the face is affected in 30-40% of known genetic syndromes. Here, we determine whether syndromes can be diagnosed from 3D images of human faces. METHODS: We analyzed variation in three-dimensional (3D) facial images of 7057 subjects: 3327 with 396 different syndromes, 727 of their relatives, and 3003 unrelated, unaffected subjects. We developed and tested machine learning and parametric approaches to automated syndrome diagnosis using 3D facial images. RESULTS: Unrelated, unaffected subjects were correctly classified with 96% accuracy. Considering both syndromic and unrelated, unaffected subjects together, balanced accuracy was 73% and mean sensitivity 49%. Excluding unrelated, unaffected subjects substantially improved both balanced accuracy (78.1%) and sensitivity (56.9%) of syndrome diagnosis. The best predictors of classification accuracy were phenotypic severity and facial distinctiveness of syndromes. Surprisingly, unaffected relatives of syndromic subjects were frequently classified as syndromic, often to the syndrome of their affected relative. CONCLUSION: Deep phenotyping by quantitative 3D facial imaging has considerable potential to facilitate syndrome diagnosis. Furthermore, 3D facial imaging of "unaffected" relatives may identify unrecognized cases or may reveal novel examples of semidominant inheritance.


Subject(s)
Face , Imaging, Three-Dimensional , Face/diagnostic imaging , Humans , Syndrome
8.
Sensors (Basel) ; 20(11)2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32503190

ABSTRACT

3D facial landmarks are known to be diagnostically relevant biometrics for many genetic syndromes. The objective of this study was to extend a state-of-the-art image-based 2D facial landmarking algorithm for the challenging task of 3D landmark identification on subjects with genetic syndromes, who often have moderate to severe facial dysmorphia. The automatic 3D facial landmarking algorithm presented here uses 2D image-based facial detection and landmarking models to identify 12 landmarks on 3D facial surface scans. The landmarking algorithm was evaluated using a test set of 444 facial scans with ground truth landmarks identified by two different human observers. Three hundred and sixty nine of the subjects in the test set had a genetic syndrome that is associated with facial dysmorphology. For comparison purposes, the manual landmarks were also used to initialize a non-linear surface-based registration of a non-syndromic atlas to each subject scan. Compared to the average intra- and inter-observer landmark distances of 1.1 mm and 1.5 mm respectively, the average distance between the manual landmark positions and those produced by the automatic image-based landmarking algorithm was 2.5 mm. The average error of the registration-based approach was 3.1 mm. Comparing the distributions of Procrustes distances from the mean for each landmarking approach showed that the surface registration algorithm produces a systemic bias towards the atlas shape. In summary, the image-based automatic landmarking approach performed well on this challenging test set, outperforming a semi-automatic surface registration approach, and producing landmark errors that are comparable to state-of-the-art 3D geometry-based facial landmarking algorithms evaluated on non-syndromic subjects.


Subject(s)
Face , Genetic Diseases, Inborn/diagnostic imaging , Imaging, Three-Dimensional , Algorithms , Face/diagnostic imaging , Humans
9.
Development ; 143(14): 2677-88, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27287806

ABSTRACT

The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research, National Institutes of Health, is designed to accelerate understanding of craniofacial developmental biology by generating comprehensive data resources to empower the research community, exploring high-throughput technology, fostering new scientific collaborations among researchers and human/computer interactions, facilitating hypothesis-driven research and translating science into improved health care to benefit patients. The resources generated by the FaceBase projects include a number of dynamic imaging modalities, genome-wide association studies, software tools for analyzing human facial abnormalities, detailed phenotyping, anatomical and molecular atlases, global and specific gene expression patterns, and transcriptional profiling over the course of embryonic and postnatal development in animal models and humans. The integrated data visualization tools, faceted search infrastructure, and curation provided by the FaceBase Hub offer flexible and intuitive ways to interact with these multidisciplinary data. In parallel, the datasets also offer unique opportunities for new collaborations and training for researchers coming into the field of craniofacial studies. Here, we highlight the focus of each spoke project and the integration of datasets contributed by the spokes to facilitate craniofacial research.


Subject(s)
Databases, Factual , Face/embryology , Research Personnel , Skull/embryology , Animals , Chromatin Immunoprecipitation , Computational Biology , Genomics , Humans , Mice , Models, Animal , Zebrafish
10.
Proc Natl Acad Sci U S A ; 113(5): 1357-62, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26787886

ABSTRACT

HLA-A is a class I major histocompatibility complex receptor that presents peptide antigens on the surface of most cells. Vitiligo, an autoimmune disease in which skin melanocytes are destroyed by cognate T cells, is associated with variation in the HLA-A gene; specifically HLA-A*02:01, which presents multiple vitiligo melanocyte autoantigens. Refined genetic mapping localizes vitiligo risk in the HLA-A region to an SNP haplotype ∼20-kb downstream, spanning an ENCODE element with many characteristics of a transcriptional enhancer. Convergent CTCF insulator sites flanking the HLA-A gene promoter and the predicted transcriptional regulator, with apparent interaction between these sites, suggests this element regulates the HLA-A promoter. Peripheral blood mononuclear cells from healthy subjects homozygous for the high-risk haplotype expressed 39% more HLA-A RNA than cells from subjects carrying nonhigh-risk haplotypes (P = 0.0048). Similarly, RNAseq analysis of 1,000 Genomes Project data showed more HLA-A mRNA expressed in subjects homozygous for the high-risk allele of lead SNP rs60131261 than subjects homozygous for the low-risk allele (P = 0.006). Reporter plasmid transfection and genomic run-on sequence analyses confirm that the HLA-A transcriptional regulator contains multiple bidirectional promoters, with greatest activity on the high-risk haplotype, although it does not behave as a classic enhancer. Vitiligo risk associated with the MHC class I region thus derives from combined quantitative and qualitative phenomena: a SNP haplotype in a transcriptional regulator that induces gain-of-function, elevating expression of HLA-A RNA in vivo, in strong linkage disequilibrium with an HLA-A allele that confers *02:01 specificity.


Subject(s)
Autoimmune Diseases/immunology , Gene Expression Regulation , HLA-A Antigens/genetics , Transcription, Genetic , Vitiligo/immunology , Autoimmune Diseases/genetics , Haplotypes , Humans , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Vitiligo/genetics
11.
Proc Natl Acad Sci U S A ; 113(5): 1363-8, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26787888

ABSTRACT

Genetic risk for autoimmunity in HLA genes is most often attributed to structural specificity resulting in presentation of self-antigens. Autoimmune vitiligo is strongly associated with the MHC class II region. Here, we fine-map vitiligo MHC class II genetic risk to three SNPs only 47 bp apart, located within a predicted super-enhancer in an intergenic region between HLA-DRB1 and HLA-DQA1, localized by a genome-wide association study of 2,853 Caucasian vitiligo patients. The super-enhancer corresponds to an expression quantitative trait locus for expression of HLA-DR and HLA-DQ RNA; we observed elevated surface expression of HLA-DR (P = 0.008) and HLA-DQ (P = 0.02) on monocytes from healthy subjects homozygous for the high-risk SNP haplotype. Unexpectedly, pathogen-stimulated peripheral blood mononuclear cells from subjects homozygous for the high-risk super-enhancer haplotype exhibited greater increase in production of IFN-γ and IL-1ß than cells from subjects homozygous for the low-risk haplotype. Specifically, production of IFN-γ on stimulation of dectin-1, mannose, and Toll-like receptors with Candida albicans and Staphylococcus epidermidis was 2.5- and 2.9-fold higher in high-risk subjects than in low-risk subjects, respectively (P = 0.007 and P = 0.01). Similarly, production of IL-1ß was fivefold higher in high-risk subjects than in low-risk subjects (P = 0.02). Increased production of immunostimulatory cytokines in subjects carrying the high-risk haplotype may act as an "adjuvant" during the presentation of autoantigens, tying together genetic variation in the MHC with the development of autoimmunity. This study demonstrates that for risk of autoimmune vitiligo, expression level of HLA class II molecules is as or more important than antigen specificity.


Subject(s)
Autoimmune Diseases/immunology , Cytokines/biosynthesis , HLA-DQ Antigens/immunology , HLA-DR Antigens/immunology , Histocompatibility Antigens Class II/immunology , Vitiligo/immunology , Enhancer Elements, Genetic , Haplotypes , Humans , Polymorphism, Single Nucleotide
12.
PLoS Genet ; 12(8): e1006174, 2016 08.
Article in English | MEDLINE | ID: mdl-27560698

ABSTRACT

The human face is a complex assemblage of highly variable yet clearly heritable anatomic structures that together make each of us unique, distinguishable, and recognizable. Relatively little is known about the genetic underpinnings of normal human facial variation. To address this, we carried out a large genomewide association study and two independent replication studies of Bantu African children and adolescents from Mwanza, Tanzania, a region that is both genetically and environmentally relatively homogeneous. We tested for genetic association of facial shape and size phenotypes derived from 3D imaging and automated landmarking of standard facial morphometric points. SNPs within genes SCHIP1 and PDE8A were associated with measures of facial size in both the GWAS and replication cohorts and passed a stringent genomewide significance threshold adjusted for multiple testing of 34 correlated traits. For both SCHIP1 and PDE8A, we demonstrated clear expression in the developing mouse face by both whole-mount in situ hybridization and RNA-seq, supporting their involvement in facial morphogenesis. Ten additional loci demonstrated suggestive association with various measures of facial shape. Our findings, which differ from those in previous studies of European-derived whites, augment understanding of the genetic basis of normal facial development, and provide insights relevant to both human disease and forensics.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/genetics , Carrier Proteins/genetics , Face/anatomy & histology , Genome-Wide Association Study , Maxillofacial Development/genetics , Adolescent , Animals , Black People , Female , Humans , Male , Mice , Morphogenesis/genetics , Phenotype , Polymorphism, Single Nucleotide , Tanzania
13.
PLoS Genet ; 12(8): e1006149, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27560520

ABSTRACT

Numerous lines of evidence point to a genetic basis for facial morphology in humans, yet little is known about how specific genetic variants relate to the phenotypic expression of many common facial features. We conducted genome-wide association meta-analyses of 20 quantitative facial measurements derived from the 3D surface images of 3118 healthy individuals of European ancestry belonging to two US cohorts. Analyses were performed on just under one million genotyped SNPs (Illumina OmniExpress+Exome v1.2 array) imputed to the 1000 Genomes reference panel (Phase 3). We observed genome-wide significant associations (p < 5 x 10-8) for cranial base width at 14q21.1 and 20q12, intercanthal width at 1p13.3 and Xq13.2, nasal width at 20p11.22, nasal ala length at 14q11.2, and upper facial depth at 11q22.1. Several genes in the associated regions are known to play roles in craniofacial development or in syndromes affecting the face: MAFB, PAX9, MIPOL1, ALX3, HDAC8, and PAX1. We also tested genotype-phenotype associations reported in two previous genome-wide studies and found evidence of replication for nasal ala length and SNPs in CACNA2D3 and PRDM16. These results provide further evidence that common variants in regions harboring genes of known craniofacial function contribute to normal variation in human facial features. Improved understanding of the genes associated with facial morphology in healthy individuals can provide insights into the pathways and mechanisms controlling normal and abnormal facial morphogenesis.


Subject(s)
Face/anatomy & histology , Genetic Association Studies , Genome-Wide Association Study , Maxillofacial Development/genetics , Genetic Variation , Genotype , Humans , Phenotype , Polymorphism, Single Nucleotide , Transcription Factors/genetics , White People
14.
Dev Biol ; 426(1): 97-114, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28363736

ABSTRACT

The rapid increase in gene-centric biological knowledge coupled with analytic approaches for genomewide data integration provides an opportunity to develop systems-level understanding of facial development. Experimental analyses have demonstrated the importance of signaling between the surface ectoderm and the underlying mesenchyme are coordinating facial patterning. However, current transcriptome data from the developing vertebrate face is dominated by the mesenchymal component, and the contributions of the ectoderm are not easily identified. We have generated transcriptome datasets from critical periods of mouse face formation that enable gene expression to be analyzed with respect to time, prominence, and tissue layer. Notably, by separating the ectoderm and mesenchyme we considerably improved the sensitivity compared to data obtained from whole prominences, with more genes detected over a wider dynamic range. From these data we generated a detailed description of ectoderm-specific developmental programs, including pan-ectodermal programs, prominence- specific programs and their temporal dynamics. The genes and pathways represented in these programs provide mechanistic insights into several aspects of ectodermal development. We also used these data to identify co-expression modules specific to facial development. We then used 14 co-expression modules enriched for genes involved in orofacial clefts to make specific mechanistic predictions about genes involved in tongue specification, in nasal process patterning and in jaw development. Our multidimensional gene expression dataset is a unique resource for systems analysis of the developing face; our co-expression modules are a resource for predicting functions of poorly annotated genes, or for predicting roles for genes that have yet to be studied in the context of facial development; and our analytic approaches provide a paradigm for analysis of other complex developmental programs.


Subject(s)
Ectoderm/embryology , Face/embryology , Gene Expression Regulation, Developmental/genetics , Maxillofacial Development/physiology , Mesoderm/embryology , Systems Biology , Animals , Jaw/embryology , Mice , Mice, Inbred C57BL , Nose/embryology , Tongue/embryology
15.
J Transl Med ; 16(1): 252, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30285864

ABSTRACT

The International Federation of Pigment Cell Societies (IFPCS) held its XXIII triennial International Pigment Cell Conference (IPCC) in Denver, Colorado in August 2017. The goal of the summit was to provide a venue promoting a vibrant interchange among leading basic and clinical researchers working on leading-edge aspects of melanocyte biology and disease. The philosophy of the meeting, entitled Breakthroughs in Pigment Cell and Melanoma Research, was to deliver a comprehensive program in an inclusive environment fostering scientific exchange and building new academic bridges. This document provides an outlook on the history, accomplishments, and sustainability of the pigment cell and melanoma research community. Shared progress in the understanding of cellular homeostasis of pigment cells but also clinical successes and hurdles in the treatment of melanoma and dermatological disorders continue to drive future research activities. A sustainable direction of the societies creates an international forum identifying key areas of imminent needs in laboratory research and clinical care and ensures the future of this vibrant, diverse and unique research community at the same time. Important advances showcase wealth and breadth of the field in melanocyte and melanoma research and include emerging frontiers in melanoma immunotherapy, medical and surgical oncology, dermatology, vitiligo, albinism, genomics and systems biology, precision bench-to-bedside approaches, epidemiology, pigment biophysics and chemistry, and evolution. This report recapitulates highlights of the federate meeting agenda designed to advance clinical and basic research frontiers from melanoma and dermatological sciences followed by a historical perspective of the associated societies and conferences.


Subject(s)
Internationality , Melanocytes/pathology , Awards and Prizes , Humans
16.
J Anat ; 232(2): 250-262, 2018 02.
Article in English | MEDLINE | ID: mdl-29193055

ABSTRACT

Variation in the shape of the human face and in stature is determined by complex interactions between genetic and environmental influences. One such environmental influence is malnourishment, which can result in growth faltering, usually diagnosed by means of comparing an individual's stature with a set of age-appropriate standards. These standards for stature, however, are typically ascertained in groups where people are at low risk for growth faltering. Moreover, genetic differences among populations with respect to stature are well established, further complicating the generalizability of stature-based diagnostic tools. In a large sample of children aged 5-19 years, we obtained high-resolution genomic data, anthropometric measures and 3D facial images from individuals within and around the city of Mwanza, Tanzania. With genome-wide complex trait analysis, we partitioned genetic and environmental variance for growth outcomes and facial shape. We found that children with growth faltering have faces that look like those of older and taller children, in a direction opposite to the expected allometric trajectory, and in ways predicted by the environmental portion of covariance at the community and individual levels. The environmental variance for facial shape varied subtly but significantly among communities, whereas genetic differences were minimal. These results reveal that facial shape preserves information about exposure to undernourishment, with important implications for refining assessments of nutritional status in children and the developmental-genetics of craniofacial variation alike.


Subject(s)
Child Development , Facial Bones/diagnostic imaging , Malnutrition/diagnosis , Adolescent , Child , Child, Preschool , Cross-Sectional Studies , Female , Growth , Humans , Imaging, Three-Dimensional , Male , Tanzania , Young Adult
17.
Am J Phys Anthropol ; 165(2): 327-342, 2018 02.
Article in English | MEDLINE | ID: mdl-29178597

ABSTRACT

OBJECTIVES: Morphological integration, or the tendency for covariation, is commonly seen in complex traits such as the human face. The effects of growth on shape, or allometry, represent a ubiquitous but poorly understood axis of integration. We address the question of to what extent age and measures of size converge on a single pattern of allometry for human facial shape. METHODS: Our study is based on two large cross-sectional cohorts of children, one from Tanzania and the other from the United States (N = 7,173). We employ 3D facial imaging and geometric morphometrics to relate facial shape to age and anthropometric measures. RESULTS: The two populations differ significantly in facial shape, but the magnitude of this difference is small relative to the variation within each group. Allometric variation for facial shape is similar in both populations, representing a small but significant proportion of total variation in facial shape. Different measures of size are associated with overlapping but statistically distinct aspects of shape variation. Only half of the size-related variation in facial shape can be explained by the first principal component of four size measures and age while the remainder associates distinctly with individual measures. CONCLUSIONS: Allometric variation in the human face is complex and should not be regarded as a singular effect. This finding has important implications for how size is treated in studies of human facial shape and for the developmental basis for allometric variation more generally.


Subject(s)
Body Size/physiology , Face/anatomy & histology , Adolescent , Adult , Anthropology, Physical , Biological Evolution , Biometry , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Imaging, Three-Dimensional , Male , Tanzania , United States , Young Adult
18.
J Med Genet ; 54(3): 186-189, 2017 03.
Article in English | MEDLINE | ID: mdl-27965375

ABSTRACT

BACKGROUND: Progressive symmetric erythrokeratoderma (PSEK) is a rare skin disorder characterised by symmetrically distributed demarcated hyperkeratotic plaques, often with associated palmoplantar hyperkeratosis, with new plaques appearing over time. Most cases are inherited in an autosomal dominant manner, although a few cases exhibit apparent autosomal recessive inheritance. OBJECTIVE: To identify the gene underlying autosomal recessive PSEK in a large Pakistani kindred. METHODS: We first carried out autozygosity mapping using microsatellite markers in candidate regions of the genome. We then carried out exome sequencing of five family members, autozygosity mapping and mutation analysis using the exome data and verification by Sanger sequencing. RESULTS: Autozygosity mapping and exome sequencing identified a homozygous frameshift deletion (c.811delA; p.Ser271fs) in KRT83, which co-segregated with the PSEK phenotype in the family and which is expected to abolish keratin 83, a type II keratin of hair and skin. CONCLUSIONS: At least some cases of PSEK result from loss-of-function mutations in KRT83. Heterozygous missense substitutions in KRT83 have been implicated in autosomal dominant monilethrix, a rare hair disorder. Our findings indicate that at least some cases of autosomal recessive PSEK and autosomal dominant monilethrix are allelic, respectively resulting from loss-of-function and missense mutations in the KRT83 gene. Together, these findings indicate that different types of mutations in KRT83 can result in quite different skin and hair phenotypes.


Subject(s)
Erythrokeratodermia Variabilis/genetics , Keratins, Hair-Specific/genetics , Keratins, Type II/genetics , Monilethrix/genetics , Alleles , Erythrokeratodermia Variabilis/pathology , Exome/genetics , Female , Hair/metabolism , Hair/pathology , Heterozygote , Homozygote , Humans , Male , Monilethrix/pathology , Mutation, Missense , Pakistan , Pedigree , Phenotype , Sequence Deletion , Skin/metabolism , Skin/pathology
19.
J Anat ; 230(4): 607-618, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28078731

ABSTRACT

Automated phenotyping is essential for the creation of large, highly standardized datasets from anatomical imaging data. Such datasets can support large-scale studies of complex traits or clinical studies related to precision medicine or clinical trials. We have developed a method that generates three-dimensional landmark data that meet the requirements of standard geometric morphometric analyses. The method is robust and can be implemented without high-performance computing resources. We validated the method using both direct comparison to manual landmarking on the same individuals and also analyses of the variation patterns and outlier patterns in a large dataset of automated and manual landmark data. Direct comparison of manual and automated landmarks reveals that automated landmark data are less variable, but more highly integrated and reproducible. Automated data produce covariation structure that closely resembles that of manual landmarks. We further find that while our method does produce some landmarking errors, they tend to be readily detectable and can be fixed by adjusting parameters used in the registration and control-point steps. Data generated using the method described here have been successfully used to study the genomic architecture of facial shape in two different genome-wide association studies of facial shape.


Subject(s)
Biometric Identification/methods , Face/anatomy & histology , Genome-Wide Association Study/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Humans
20.
Hum Genomics ; 10: 11, 2016 Apr 23.
Article in English | MEDLINE | ID: mdl-27108086

ABSTRACT

BACKGROUND: Reliable, inexpensive, high-throughput genotyping methods are required for clinical trials. Traditional assays require numerous enzyme digestions or are too expensive for large sample volumes. Our objective was to develop an inexpensive, efficient, and reliable assay for CYP2D6 and ADRB1 accounting for numerous polymorphisms including gene duplications. MATERIALS AND METHODS: We utilized the multiplex SNaPshot® custom genotype method to genotype CYP2D6 and ADRB1. We compared the method to reference standards genotyped using the Taqman Copy Number Variant Assay followed by pyrosequencing quantification and determined assigned genotype concordance. RESULTS: We genotyped 119 subjects. Seven (5.9 %) were found to be CYP2D6 poor metabolizers (PMs), 18 (15.1 %) intermediate metabolizers (IMs), 89 (74.8 %) extensive metabolizers (EMs), and 5 (4.2 %) ultra-rapid metabolizers (UMs). We genotyped two variants in the ß1-adrenoreceptor, rs1801253 (Gly389Arg) and rs1801252 (Ser49Gly). The Gly389Arg genotype is Gly/Gly 18 (15.1 %), Gly/Arg 58 (48.7 %), and Arg/Arg 43 (36.1 %). The Ser49Gly genotype is Ser/Ser 82 (68.9 %), Ser/Gly 32 (26.9), and Gly/Gly 5 (4.2 %). The multiplex SNaPshot method was concordant with genotypes in reference samples. CONCLUSIONS: The multiplex SNaPshot method allows for specific and accurate detection of CYP2D6 genotypes and ADRB1 genotypes and haplotypes. This platform is simple and efficient and suited for high throughput.


Subject(s)
Cytochrome P-450 CYP2D6/genetics , Genotyping Techniques/methods , Polymorphism, Genetic , Receptors, Adrenergic, beta-1/genetics , Adult , Aged , Aged, 80 and over , Alleles , Cytochrome P-450 CYP2D6/isolation & purification , DNA Copy Number Variations , Female , Gene Duplication , Genotype , Haplotypes/genetics , Humans , Male , Middle Aged , Receptors, Adrenergic, beta-1/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL