Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nature ; 594(7863): 418-423, 2021 06.
Article in English | MEDLINE | ID: mdl-33953400

ABSTRACT

Although RAF monomer inhibitors (type I.5, BRAF(V600)) are clinically approved for the treatment of BRAFV600-mutant melanoma, they are ineffective in non-BRAFV600 mutant cells1-3. Belvarafenib is a potent and selective RAF dimer (type II) inhibitor that exhibits clinical activity in patients with BRAFV600E- and NRAS-mutant melanomas. Here we report the first-in-human phase I study investigating the maximum tolerated dose, and assessing the safety and preliminary efficacy of belvarafenib in BRAFV600E- and RAS-mutated advanced solid tumours (NCT02405065, NCT03118817). By generating belvarafenib-resistant NRAS-mutant melanoma cells and analysing circulating tumour DNA from patients treated with belvarafenib, we identified new recurrent mutations in ARAF within the kinase domain. ARAF mutants conferred resistance to belvarafenib in both a dimer- and a kinase activity-dependent manner. Belvarafenib induced ARAF mutant dimers, and dimers containing mutant ARAF were active in the presence of inhibitor. ARAF mutations may serve as a general resistance mechanism for RAF dimer inhibitors as the mutants exhibit reduced sensitivity to a panel of type II RAF inhibitors. The combination of RAF plus MEK inhibition may be used to delay ARAF-driven resistance and suggests a rational combination for clinical use. Together, our findings reveal specific and compensatory functions for the ARAF isoform and implicate ARAF mutations as a driver of resistance to RAF dimer inhibitors.


Subject(s)
Drug Resistance, Neoplasm/genetics , Melanoma/drug therapy , Melanoma/genetics , Mutation , Proto-Oncogene Proteins A-raf/antagonists & inhibitors , Proto-Oncogene Proteins A-raf/genetics , raf Kinases/antagonists & inhibitors , Animals , Cell Line , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Female , Humans , Melanoma/pathology , Mice , Protein Multimerization/drug effects , Proto-Oncogene Proteins A-raf/chemistry , raf Kinases/chemistry
2.
PLoS Genet ; 15(6): e1008187, 2019 06.
Article in English | MEDLINE | ID: mdl-31226128

ABSTRACT

Active adult stem cells maintain a bipotential state with progeny able to either self-renew or initiate differentiation depending on extrinsic signals from the surrounding microenvironment. However, the intrinsic gene regulatory networks and chromatin states that allow adult stem cells to make these cell fate choices are not entirely understood. Here we show that the transcription factor DNA Replication-related Element Factor (DREF) regulates adult stem cell maintenance in the Drosophila male germline. A temperature-sensitive allele of DREF described in this study genetically separated a role for DREF in germline stem cell self-renewal from the general roles of DREF in cell proliferation. The DREF temperature-sensitive allele caused defects in germline stem cell self-renewal but allowed viability and division of germline stem cells as well as cell viability, growth and division of somatic cyst stem cells in the testes and cells in the Drosophila eye. Germline stem cells mutant for the temperature sensitive DREF allele exhibited lower activation of a TGF-beta reporter, and their progeny turned on expression of the differentiation factor Bam prematurely. Results of genetic interaction analyses revealed that Mi-2 and Caf1/p55, components of the Nucleosome Remodeling and Deacetylase (NuRD) complex, genetically antagonize the role of DREF in germline stem cell maintenance. Taken together, these data suggest that DREF contributes to intrinsic components of the germline stem cell regulatory network that maintains competence to self-renew.


Subject(s)
Adenosine Triphosphatases/genetics , Adult Stem Cells/metabolism , Autoantigens/genetics , Drosophila Proteins/genetics , Retinoblastoma-Binding Protein 4/genetics , Transcription Factors/genetics , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Cell Self Renewal/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Germ Cells/growth & development , Male , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Stem Cell Niche/genetics , Testis/growth & development , Testis/metabolism , Transforming Growth Factor beta/genetics
3.
PLoS Genet ; 9(11): e1003903, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24244183

ABSTRACT

Many tissues are sustained by adult stem cells, which replace lost cells by differentiation and maintain their own population through self-renewal. The mechanisms through which adult stem cells maintain their identity are thus important for tissue homeostasis and repair throughout life. Here, we show that a histone variant, His2Av, is required cell autonomously for maintenance of germline and cyst stem cells in the Drosophila testis. The ATP-dependent chromatin-remodeling factor Domino is also required in this tissue for adult stem cell maintenance possibly by regulating the incorporation of His2Av into chromatin. Interestingly, although expression of His2Av was ubiquitous, its function was dispensable for germline and cyst cell differentiation, suggesting a specific role for this non-canonical histone in maintaining the stem cell state in these lineages.


Subject(s)
Adult Stem Cells/metabolism , Chromatin Assembly and Disassembly/genetics , Drosophila Proteins/metabolism , Histones/genetics , Transcription Factors/metabolism , Adult Stem Cells/cytology , Animals , Cell Differentiation , Drosophila Proteins/genetics , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Germ Cells , Homeostasis , Male , Signal Transduction , Testis/metabolism , Transcription Factors/genetics
4.
Development ; 139(8): 1381-90, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22378638

ABSTRACT

The stem cell niche provides a supportive microenvironment to maintain adult stem cells in their undifferentiated state. Adhesion between adult stem cells and niche cells or the local basement membrane ensures retention of stem cells in the niche environment. Drosophila male germline stem cells (GSCs) attach to somatic hub cells, a component of their niche, through E-cadherin-mediated adherens junctions, and orient their centrosomes toward these localized junctional complexes to carry out asymmetric divisions. Here we show that the transmembrane receptor tyrosine phosphatase Leukocyte-antigen-related-like (Lar), which is best known for its function in axonal migration and synapse morphogenesis in the nervous system, helps maintain GSCs at the hub by promoting E-cadherin-based adhesion between hub cells and GSCs. Lar is expressed in GSCs and early spermatogonial cells and localizes to the hub-GSC interface. Loss of Lar function resulted in a reduced number of GSCs at the hub. Lar function was required cell-autonomously in germ cells for proper localization of Adenomatous polyposis coli 2 and E-cadherin at the hub-GSC interface and for the proper orientation of centrosomes in GSCs. Ultrastructural analysis revealed that in Lar mutants the adherens junctions between hub cells and GSCs lack the characteristic dense staining seen in wild-type controls. Thus, the Lar receptor tyrosine phosphatase appears to polarize and retain GSCs through maintenance of localized E-cadherin-based adherens junctions.


Subject(s)
Germ Cells/cytology , Stem Cells/cytology , Adherens Junctions/metabolism , Animals , Cadherins/metabolism , Cell Adhesion , Cell Differentiation , Cell Lineage , Crosses, Genetic , Drosophila Proteins/metabolism , Drosophila melanogaster , Female , Green Fluorescent Proteins/metabolism , Male , Microscopy, Phase-Contrast/methods , Receptor-Like Protein Tyrosine Phosphatases/metabolism
5.
PLoS Genet ; 4(10): e1000217, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18846226

ABSTRACT

Polycomb and trithorax group proteins regulate cellular pluripotency and differentiation by maintaining hereditable states of transcription. Many Polycomb and trithorax group proteins have been implicated in the covalent modification or remodeling of chromatin, but how they interact with each other and the general transcription machinery to regulate transcription is not well understood. The trithorax group protein Kismet-L (KIS-L) is a member of the CHD subfamily of chromatin-remodeling factors that plays a global role in transcription by RNA polymerase II (Pol II). Mutations in CHD7, the human counterpart of kis, are associated with CHARGE syndrome, a developmental disorder affecting multiple tissues and organs. To clarify how KIS-L activates gene expression and counteracts Polycomb group silencing, we characterized defects resulting from the loss of KIS-L function in Drosophila. These studies revealed that KIS-L acts downstream of P-TEFb recruitment to stimulate elongation by Pol II. The presence of two chromodomains in KIS-L suggested that its recruitment or function might be regulated by the methylation of histone H3 lysine 4 by the trithorax group proteins ASH1 and TRX. Although we observed significant overlap between the distributions of KIS-L, ASH1, and TRX on polytene chromosomes, KIS-L did not bind methylated histone tails in vitro, and loss of TRX or ASH1 function did not alter the association of KIS-L with chromatin. By contrast, loss of kis function led to a dramatic reduction in the levels of TRX and ASH1 associated with chromatin and was accompanied by increased histone H3 lysine 27 methylation-a modification required for Polycomb group repression. A similar increase in H3 lysine 27 methylation was observed in ash1 and trx mutant larvae. Our findings suggest that KIS-L promotes early elongation and counteracts Polycomb group repression by recruiting the ASH1 and TRX histone methyltransferases to chromatin.


Subject(s)
DNA Helicases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Epigenesis, Genetic , Histones/metabolism , Homeodomain Proteins/metabolism , RNA Polymerase II/metabolism , Animals , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Helicases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Genes, Insect , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Histones/genetics , Homeodomain Proteins/genetics , Lysine/chemistry , Methylation , Protein Processing, Post-Translational , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Cancer Immunol Res ; 8(7): 844-850, 2020 07.
Article in English | MEDLINE | ID: mdl-32321776

ABSTRACT

Prostate cancer is the second leading cause of cancer-related death in men. Despite having a relatively lower tumor mutational burden than most tumor types, multiple gene fusions such as TMPRSS2:ERG have been characterized and linked to more aggressive disease. Individual tumor samples have been found to contain multiple fusions, and it remains unknown whether these fusions increase tumor immunogenicity. Here, we investigated the role of fusion burden on the prevalence and expression of key molecular and immune effectors in prostate cancer tissue specimens that represented the different stages of disease progression and androgen sensitivity, including hormone-sensitive and castration-resistant prostate cancer. We found that tumor fusion burden was inversely correlated with tumor mutational burden and not associated with disease stage. High fusion burden correlated with high immune infiltration, PD-L1 expression on immune cells, and immune signatures, representing activation of T cells and M1 macrophages. High fusion burden inversely correlated with immune-suppressive signatures. Our findings suggest that high tumor fusion burden may be a more appropriate biomarker than tumor mutational burden in prostate cancer, as it more closely associates with immunogenicity, and suggests that tumors with high fusion burden could be potential candidates for immunotherapeutic agents.


Subject(s)
B7-H1 Antigen/genetics , Biomarkers, Tumor/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mutation , Oncogene Fusion , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , B7-H1 Antigen/immunology , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Macrophages/immunology , Male , Neoplasm Grading , Neoplasm Staging , Prostatic Neoplasms/pathology , RNA-Seq/methods
7.
Cancer Res ; 79(15): 3916-3927, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31182547

ABSTRACT

Regulatory T cells (Treg) are immunosuppressive and negatively impact response to cancer immunotherapies. CREB-binding protein (CBP) and p300 are closely related acetyltransferases and transcriptional coactivators. Here, we evaluate the mechanisms by which CBP/p300 regulate Treg differentiation and the consequences of CBP/p300 loss-of-function mutations in follicular lymphoma. Transcriptional and epigenetic profiling identified a cascade of transcription factors essential for Treg differentiation. Mass spectrometry analysis showed that CBP/p300 acetylates prostacyclin synthase, which regulates Treg differentiation by altering proinflammatory cytokine secretion by T and B cells. Reduced Treg presence in tissues harboring CBP/p300 loss-of-function mutations was observed in follicular lymphoma. Our findings provide novel insights into the regulation of Treg differentiation by CBP/p300, with potential clinical implications on alteration of the immune landscape. SIGNIFICANCE: This study provides insights into the dynamic role of CBP/p300 in the differentiation of Tregs, with potential clinical implications in the alteration of the immune landscape in follicular lymphoma.


Subject(s)
CREB-Binding Protein/immunology , E1A-Associated p300 Protein/immunology , Lymphoma, Follicular/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Acetylation , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CREB-Binding Protein/antagonists & inhibitors , CREB-Binding Protein/genetics , Cell Differentiation/physiology , Down-Regulation , E1A-Associated p300 Protein/antagonists & inhibitors , E1A-Associated p300 Protein/genetics , Histones/metabolism , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/metabolism , Lymphoma, Follicular/pathology , Mutation , Pyrazoles/pharmacology , Pyridines/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Transcription, Genetic , Transcriptome
8.
NPJ Precis Oncol ; 2(1): 7, 2018.
Article in English | MEDLINE | ID: mdl-29872725

ABSTRACT

KRAS- and BRAF-mutant tumors are often dependent on MAPK signaling for proliferation and survival and thus sensitive to MAPK pathway inhibitors. However, clinical studies have shown that MEK inhibitors are not uniformly effective in these cancers indicating that mutational status of these oncogenes does not accurately capture MAPK pathway activity. A number of transcripts are regulated by this pathway and are recurrently identified in genome-based MAPK transcriptional signatures. To test whether the transcriptional output of only 10 of these targets could quantify MAPK pathway activity with potential predictive or prognostic clinical utility, we created a MAPK Pathway Activity Score (MPAS) derived from aggregated gene expression. In vitro, MPAS predicted sensitivity to MAPK inhibitors in multiple cell lines, comparable to or better than larger genome-based statistical models. Bridging in vitro studies and clinical samples, median MPAS from a given tumor type correlated with cobimetinib (MEK inhibitor) sensitivity of cancer cell lines originating from the same tissue type. Retrospective analyses of clinical datasets showed that MPAS was associated with the sensitivity of melanomas to vemurafenib (HR: 0.596) and negatively prognostic of overall or progression-free survival in both adjuvant and metastatic CRC (HR: 1.5 and 1.4), adrenal cancer (HR: 1.7), and HER2+ breast cancer (HR: 1.6). MPAS thus demonstrates potential clinical utility that warrants further exploration.

9.
Science ; 356(6339): 717-721, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28522526

ABSTRACT

To selectively express cell type-specific transcripts during development, it is critical to maintain genes required for other lineages in a silent state. Here, we show in the Drosophila male germline stem cell lineage that a spermatocyte-specific zinc finger protein, Kumgang (Kmg), working with the chromatin remodeler dMi-2 prevents transcription of genes normally expressed only in somatic lineages. By blocking transcription from normally cryptic promoters, Kmg restricts activation by Aly, a component of the testis-meiotic arrest complex, to transcripts for male germ cell differentiation. Our results suggest that as new regions of the genome become open for transcription during terminal differentiation, blocking the action of a promiscuous activator on cryptic promoters is a critical mechanism for specifying precise gene activation.


Subject(s)
Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Gene Expression Regulation/genetics , Organ Specificity/genetics , Promoter Regions, Genetic/genetics , Adenosine Triphosphatases/genetics , Animals , Autoantigens/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Chromatin/genetics , Chromatin/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spermatocytes/cytology , Spermatocytes/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Testis/cytology , Testis/metabolism
10.
J Immunol Methods ; 272(1-2): 55-65, 2003 Jan 15.
Article in English | MEDLINE | ID: mdl-12505712

ABSTRACT

Interferon-gamma (IFN-gamma) is an important immunomodulatory and pleiotropic cytokine produced, primarily, by activated T lymphocytes and natural killer (NK) cells. We have devised a nitric oxide (NO)-based bioassay for mouse IFN-gamma using resident peritoneal exudate cells (PECs) from C57BL/6 mice. Comparison with three existing bioassays demonstrated that this assay was very sensitive and detected IFN-gamma in the linear range of approximately 0.03-0.25 U/ml. Other cytokines, e.g. interleukin (IL)-2, IL-4, IL-6, IFN-alpha/beta and tumor necrosis factor-alpha (TNF-alpha), either alone or in combination with IFN-gamma, did not greatly modulate NO levels produced by resident peritoneal exudate cells. The presence of exogenous NO(3)(-) and H(2)O(2) did not interfere with the IFN-gamma induced NO production and detection. We also showed that the effect of lipopolysaccharide (LPS), which may be present in samples, could be suppressed by the use of Polymyxin B in the bioassay. The high sensitivity of the bioassay permitted the detection of low amounts of IFN-gamma in 1% mouse serum. In addition, this assay reproducibly detected bioactive IFN-gamma amounts in supernatants of activated T cells. The increase in IFN-gamma production by activated T cells in response to CD28 costimulation was approximately 3-fold by this bioassay and approximately 5-fold by ELISA. In summary, we have devised a simple, sensitive, inexpensive and high throughput method for the reproducible detection of bioactive IFN-gamma.


Subject(s)
Biological Assay/methods , Interferon-gamma/analysis , Nitric Oxide/biosynthesis , Animals , Ascitic Fluid/cytology , Ascitic Fluid/immunology , Ascitic Fluid/metabolism , Biological Assay/standards , Biological Assay/statistics & numerical data , Cell Line , Cytokines/pharmacology , Female , In Vitro Techniques , Lipopolysaccharides/pharmacology , Lymphocyte Activation , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Inbred C57BL , Polymyxin B/pharmacology , Sensitivity and Specificity , T-Lymphocytes/immunology
11.
Development ; 132(7): 1623-35, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15728673

ABSTRACT

The Drosophila trithorax group gene kismet (kis) was identified in a screen for extragenic suppressors of Polycomb (Pc) and subsequently shown to play important roles in both segmentation and the determination of body segment identities. One of the two major proteins encoded by kis (KIS-L) is related to members of the SWI2/SNF2 and CHD families of ATP-dependent chromatin-remodeling factors. To clarify the role of KIS-L in gene expression, we examined its distribution on larval salivary gland polytene chromosomes. KIS-L is associated with virtually all sites of transcriptionally active chromatin in a pattern that largely overlaps that of RNA Polymerase II (Pol II). The levels of elongating Pol II and the elongation factors SPT6 and CHD1 are dramatically reduced on polytene chromosomes from kis mutant larvae. By contrast, the loss of KIS-L function does not affect the binding of PC to chromatin or the recruitment of Pol II to promoters. These data suggest that KIS-L facilitates an early step in transcriptional elongation by Pol II.


Subject(s)
DNA Helicases/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Homeodomain Proteins/genetics , RNA Polymerase II/metabolism , Transcription, Genetic/physiology , Animals , Chromatin Assembly and Disassembly/physiology , DNA Helicases/metabolism , Drosophila/metabolism , Drosophila Proteins/metabolism , Homeodomain Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL