Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
J Fish Dis ; 47(3): e13905, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38073005

ABSTRACT

The presence of endogenous viral elements (EVE) in the penaeid shrimp genome has been recently reported and suggested to be involved in the host recognition of viral invaders. Our previous report of a search for EVE of infectious hypodermal and haematopoietic necrosis virus (IHHNV-EVE) in the Thai Penaeus monodon whole genome sequence project (GenBank accession no. JABERT000000000) confirmed the presence of three clusters of EVE derived from IHHNV in the shrimp genome. This study aimed to compare an immunohistochemistry method (IHC) and a PCR method to detect infectious IHHNV infection in shrimp. First, specimens collected from farms were checked for IHHNV using three PCR methods; two methods were recommended by WOAH (309 and 389 methods), and a newly established long-range PCR for IHHNV (IHHNV-LA PCR) targeting almost the whole genome (>90%) of IHHNV. Among 29 specimens tested, 24 specimens were positive for WOAH methods (at least one method). Among 24 WOAH-positive specimens (WOAH+), there were 18 specimens with positive IHHNV-LA PCR method (WOAH+/LA+), six specimens with negative IHHNV-LA PCR method (WOAH+/LA-). Six specimens were negative for all methods (WOAH-/LA-). The positive signals detected by IHC method were found only in the specimens with WOAH+/LA+. The results suggest that the WOAH+/LA- specimens were not infected with IHHNV, and the positive WOAH method might result from the EVE-IHHNV. The study recommends combining the IHHNV-LA PCR method and IHC with positive PCR results from WOAH's recommended methods to confirm IHHNV infection.


Subject(s)
Densovirinae , Fish Diseases , Penaeidae , Animals , Polymerase Chain Reaction/veterinary , Immunohistochemistry , Fish Diseases/diagnosis
2.
BMC Genomics ; 23(1): 565, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35933380

ABSTRACT

BACKGROUND: Shrimp have the ability to accommodate viruses in long term, persistent infections without signs of disease. Endogenous viral elements (EVE) play a role in this process probably via production of negative-sense Piwi-interacting RNA (piRNA)-like fragments. These bind with Piwi proteins to dampen viral replication via the RNA interference (RNAi) pathway. We searched a genome sequence (GenBank record JABERT000000000) of the giant tiger shrimp (Penaeus monodon for the presence of EVE related to a shrimp parvovirus originally named infectious hypodermal and hematopoietic necrosis virus (IHHNV). RESULTS: The shrimp genome sequence contained three piRNA-like gene clusters containing scrambled IHHNV EVE. Two clusters were located distant from one another in pseudochromosome 35 (PC35). Both PC35 clusters contained multiple sequences with high homology (99%) to GenBank records DQ228358 and EU675312 that were both called "non-infectious IHHNV Type A" (IHHNV-A) when originally discovered. However, our results and those from a recent Australian P. monodon genome assembly indicate that the relevant GenBank records for IHHNV-A are sequence-assembly artifacts derived from scrambled and fragmental IHHNV-EVE. Although the EVE in the two PC35 clusters showed high homology only to IHHNV-A, the clusters were separate and distinct with respect to the arrangement (i.e., order and reading direction) and proportional content of the IHHNV-A GenBank records. We conjecture that these 2 clusters may constitute independent allele-like clusters on a pair of homologous chromosomes. The third EVE cluster was found in pseudochromosome 7 (PC7). It contained EVE with high homology (99%) only to GenBank record AF218266 with the potential to protect shrimp against current types of infectious IHHNV. One disadvantage was that some EVE in PC7 can give false positive PCR test results for infectious IHHNV. CONCLUSIONS: Our results suggested the possibility of viral-type specificity in EVE clusters. Specificity is important because whole EVE clusters for one viral type would be transmitted to offspring as collective hereditary units. This would be advantageous if one or more of the EVE within the cluster were protective against the disease caused by the cognate virus. It would also facilitate gene editing for removal of non-protective EVE clusters or for transfer of protective EVE clusters to genetically improve existing shrimp breeding stocks that might lack them.


Subject(s)
Densovirinae , Parvovirus , Penaeidae , Animals , Australia , DNA, Viral/genetics , Densovirinae/genetics , Genome, Viral , Parvovirus/genetics , Penaeidae/genetics , RNA, Small Interfering
3.
J Invertebr Pathol ; 187: 107690, 2022 01.
Article in English | MEDLINE | ID: mdl-34793819

ABSTRACT

Enterocytozoon hepatopenaei (EHP) is an obligate intracellular parasite causing hepatopancreatic microsporidiosis (HPM) in cultivated shrimp in Asian countries. One strategy to control EHP is to identify and eliminate biological reservoir(s) in shrimp ponds. Several marine and brackish-water organisms, including false mussels (Mytilopsis) have been reported to test positive for EHP using the PCR method. Thus, we tested Thai false mussel Mytilopsis leucophaeata collected from the 6 ponds with EHP-infected shrimp for the presence of EHP using SWP-PCR. Results revealed the sampled mussels from all 6 ponds were PCR positive. Subsequent bioassays were carried out to study EHP transmission between mussels and shrimp. Firstly, the naïve mussels were cohabitated with EHP-infected shrimp and all mussels were SWP-PCR positive at day 20 post cohabitation. One batch of such PCR-positive mussels was transferred for cohabitation with naïve shrimp and 37.5% EHP-positive shrimp were observed within 10 days. Tissue analysis of the SWP-PCR-positive mussels using light microscopy, in situ hybridization technique and electron microscopy did not confirm EHP infection. In summary, there was no evidence demonstrating that Mytilopsis leucophaeata was itself infected with EHP. However, the false mussels were apparently capable of carrying infectious spores for some period after ingestion and serving as a mechanical or passive carrier. The results support previous reports warning of the danger of feeding living or fresh bivalves to broodstock shrimp in hatcheries or shrimp in rearing ponds without prior heating or freezing.


Subject(s)
Bivalvia , Enterocytozoon , Microsporidia , Penaeidae , Animals , Enterocytozoon/genetics
4.
J Invertebr Pathol ; 192: 107784, 2022 07.
Article in English | MEDLINE | ID: mdl-35659607

ABSTRACT

White feces syndrome (WFS) in cultivated shrimp is characterized by white shrimp midguts (intestines) and white fecal strings that float as mats on pond surfaces. The etiology of WFS is complex, but one type called EHP-WFS is associated with the microsporidian Enterocytozoon hepatopenaei (EHP). The hepatopancreas (HP), midgut and fecal strings of EHP-WFS shrimp exhibit massive quantities of EHP spores together with mixed, unidentified bacteria. In EHP-WFS ponds, some EHP-infected shrimp show white midguts (WG) and produce white feces while other EHP-infected shrimp in the same pond show grossly normal midguts (NG) and produce no white feces. We hypothesized that comparison of the microbial flora between WG and NG shrimp would reveal probable combinations of microbes significantly associated with EHP-WFS. To test this, we selected a Penaeus vannamei cultivation pond exhibiting severe WFS and used microscopic and microbial profiling analyses to compare WG and NG samples. Histologically, EHP was confirmed in the HP and midgut of both WG and NG shrimp, but EHP burdens were higher and EHP tissue damage was more severe in WG shrimp. Further, intestinal microbiomes in WG shrimp were less diverse and had higher abundance of bacteria from the genera Vibrio and Propionigenium. Propionigenium burden in the HP of WG shrimp (9364 copies/100 ng DNA) was significantly higher (P = 1.1 × 10-5) than in NG shrimp (12 copies/100 ng DNA). These findings supported our hypothesis by revealing two candidate bacterial genera that should be tested in combination with EHP as potential component causes of EHP-WFS in P. vannamei.


Subject(s)
Enterocytozoon , Microsporidia , Penaeidae , Propionigenium , Vibrio , Animals , DNA , Enterocytozoon/genetics , Feces/microbiology , Microsporidia/genetics , Penaeidae/microbiology , Polymerase Chain Reaction , Vibrio/genetics
5.
BMC Microbiol ; 21(1): 88, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33757419

ABSTRACT

BACKGROUND: Viruses cause significant economic losses to shrimp aquaculture worldwide. In severe cases, they can lead to 100% mortality within a matter of days, hence the aquaculture industry requires antiviral strategies to minimize economic impacts. Currently, a double-stranded RNA (dsRNA)-based platform has been proven effective at a laboratory scale. The bottleneck for its industrialization is the lack of low-cost, efficient and practical delivery approaches. In an effort to bridge the gap between laboratory and farm applications, virus-like particles (VLP) have been used as nanocarriers of dsRNA. However, the implementation of this approach still suffers from high costs and a lengthy procedure, co-expression of subunits of VLP or capsid proteins (CPs) and dsRNA can be the solution for the problem. CP and dsRNA are traditionally expressed in two different E. coli hosts: protease-deficient and RNase III-deficient strains. To condense the manufacturing of dsRNA-containing VLP, this study constructed a novel E. coli strain that is able to co-express viral capsid proteins and dsRNA in the same E. coli cell. RESULTS: A novel bacterial strain DualX-B15(DE3) was engineered to be both protease- and RNase III-deficiency via P1 phage transduction. The results revealed that it could simultaneously express recombinant proteins and dsRNA. CONCLUSION: Co-expression of viral capsid proteins and dsRNA in the same cell has been shown to be feasible. Not only could this platform serve as a basis for future cost-effective and streamlined production of shrimp antiviral therapeutics, it may be applicable for other applications that requires co-expression of recombinant proteins and dsRNA.


Subject(s)
Aquaculture/methods , Capsid Proteins/genetics , Escherichia coli/genetics , Organisms, Genetically Modified/genetics , Penaeidae/virology , RNA, Double-Stranded/genetics , Animals , Microbial Interactions , Penaeidae/microbiology
6.
Fish Shellfish Immunol ; 110: 10-22, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33383176

ABSTRACT

In crustacean, hemocytes are known as crucial components of crustaceans' innate immunity against pathogens. Drastic hemocytes reduction during infectious disease is apparently related to disease severity and calls for a health status evaluation and aquaculture management. The molecular pathogenesis of hemocytes loss during bacterial infection was elucidated with VPAHPND challenged in M. rosenbergii. We report herein a correlation between hemocyte loss and the pathogenicity and aggressive immune response in hematopoietic tissues of moribund M. rosenbergii. In this study, adult freshwater prawn was administered an LC50 dose of VPAHPND; bacterial clearance ensued, and success was reached within 24 h. Hemocytes increased in survival, yet drastically decreased in moribund prawn. Pathological analysis of hematopoietic tissue of moribund prawn showed apparent abnormal signs, including the presence of bacteria, a small number of mitotic cells, cellular swelling, loosening of connective tissue, and karyorrhectic nuclei cells. A significant upregulation of a core apoptotic machinery gene, caspase-3, was detected in hematopoietic tissue of moribund shrimp, but not in those of Escherichia coli DH5α (non-pathogenic bacteria) and VPAHPND survival prawn. The highest level was found in the moribund group, which confirms the occurrence of apoptosis in this hematopoietic tissue. Further, our results suggest that hematopoietic tissue damage may arise from inflammation triggered by an aggressive immune response. Immune activation was indicated by the comparison of immune-related gene expression between controls, E. coli (DH5α)-infected (non-pathogenic), and VPAHPND-infected survival groups with moribund prawn. RT-PCR revealed a significant upregulation of all genes in hematopoietic tissues and hemocytes within 6-12 h and declined by 24 h. This evident related to the almost VPAHPND are clearance in survival and E. coli (DH5α) challenged group in contrast with drastic high expression was determined in moribund group. We conclude that a reduction of renewing circulating hemocytes in fatally VPAHPND-infected prawn was caused by an acute self-destructive immune response by hematopoietic cells.


Subject(s)
Bacteria/pathogenicity , Gene Expression/immunology , Hematopoietic System/immunology , Immunity, Innate/genetics , Palaemonidae/immunology , Vibrio parahaemolyticus/physiology , Animals , Hematopoietic System/microbiology , Hematopoietic System/pathology , Hemocytes/immunology , Homeostasis , Palaemonidae/microbiology , Virulence
7.
Fish Shellfish Immunol ; 114: 36-48, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33864947

ABSTRACT

By using immunohistochemistry detection, yellow head virus (YHV) was found to replicate in granule-containing hemocytes including semi-granular hemocytes (SGC) and granular hemocytes (GC) during the early phase (24 h post injection) of YHV-infected shrimp. Higher signal of YHV infection was found in GC more than in SGC. Comparative phosphoproteomic profiles between YHV-infected and non-infected GC reveal a number of phosphoproteins with different expression levels. The phosphoprotein spot with later on identified as caspase-3 in YHV-infected GC is most interesting. Blocking caspase-3 function using a specific inhibitor (Ac-DEVD-CMK) demonstrated high replication of YHV and consequently, high shrimp mortality. The immunohistochemistry results confirmed the high viral load in shrimp that caspase-3 activity was blocked. Caspase-3 is regulated through a variety of posttranslational modifications, including phosphorylation. Analysis of phosphorylation sites of shrimp caspase-3 revealed phosphorylation sites at serine residue. Taken together, caspase-3 is a hemocytic protein isolated from shrimp granular hemocytes with a role in anti-YHV response and regulated through the phosphorylation process.


Subject(s)
Caspase 3/metabolism , Hemocytes/enzymology , Penaeidae/virology , Roniviridae , Animals , Caspase 3/genetics , Gene Expression Regulation, Enzymologic/immunology , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/physiology
8.
J Invertebr Pathol ; 186: 107458, 2021 11.
Article in English | MEDLINE | ID: mdl-32882232

ABSTRACT

Disease is a major limiting factor in the global production of cultivated shrimp. The microsporidian parasite Enterocytozoon hepatopenaei (EHP) was formally characterized in 2009 as a rare infection of the black tiger shrimp Penaeus monodon. It remained relatively unstudied until mid-2010, after which infection with EHP became increasingly common in the Pacific whiteleg shrimp Penaeus vannamei, by then the most common shrimp species farmed in Asia. EHP infects the hepatopancreas of its host, causing hepatopancreatic microsporidiosis (HPM), a condition that has been associated with slow growth of the host in aquaculture settings. Unlike other infectious disease agents that have caused economic losses in global shrimp aquaculture, EHP has proven more challenging because too little is still known about its environmental reservoirs and modes of transmission during the industrial shrimp production process. This review summarizes our current knowledge of the EHP life cycle and the molecular strategies that it employs as an obligate intracellular parasite. It also provides an analysis of available and new methodologies for diagnosis since most of the current literature on EHP focuses on that topic. We summarize current knowledge of EHP infection and transmission dynamics and currently recommended, practical control measures that are being applied to limit its negative impact on shrimp cultivation. We also point out the major gaps in knowledge that urgently need to be bridged in order to improve control measures.


Subject(s)
Enterocytozoon/physiology , Hepatopancreas/parasitology , Life History Traits , Penaeidae/parasitology , Animals , Aquaculture
9.
J Invertebr Pathol ; 175: 107442, 2020 09.
Article in English | MEDLINE | ID: mdl-32663545

ABSTRACT

Double-stranded RNA (dsRNA) is employed to down-regulate the expression of specific genes of shrimp viral pathogens through the RNA interference (RNAi) pathway. The administration of dsRNA into shrimp has been shown to be an effective strategy to block yellow head virus (YHV) progression. In this study, a vector (pLVX-AcGFP1-N1) was developed to introduce a long-hairpin RNA (lhRNA) silencing cassette under a CMV promoter, so-called "pLVX-lhRdRp", against the RNA-dependent RNA polymerase (RdRp) gene of YHV. A primary culture of hemocytes isolated from Penaeus monodon was transfected with the pLVX-lhRdRp vector, generating transcripts of lhRNAs as early as 12 h post transfection. Twelve hours prior to YHV challenge, the primary hemocyte cell culture was transfected with pLVX-lhRdRp, whereas control groups were transfected with pLVX-AcGFP1-N1 or no transfection. The group treated with pLVX-lhRdRp significantly suppressed YHV replication at 24-72 h after YHV challenge. The results from RT-PCR and immunohistochemistry confirmed that both mRNA and protein expression of YHV were effectively inhibited by the pLVX-lhRdRp vector. Thus, our hemocyte culture and dsRNA expression plasmid with constitutive promoter have potential as a platform to test DNA constructs expressing long-hairpin RNA against pathogenic viral infection and as a RNAi-based DNA vaccine in shrimp.


Subject(s)
Hemocytes/virology , Penaeidae/virology , RNA Interference , RNA, Double-Stranded/metabolism , Roniviridae/physiology , Virus Replication , Animals
10.
Fish Shellfish Immunol ; 88: 415-423, 2019 May.
Article in English | MEDLINE | ID: mdl-30872029

ABSTRACT

The hematopoietic organ (HO) of the giant freshwater prawn Macrobrachium rosenbergii is a discrete, whitish mass located in the epigastric region of the cephalothorax, posterior to the brain. It is composed of hematopoietic cells arranged in a thick layer of numerous lobules that surround a central hemal sinus from which they are separated by a thin sheath. At the center of the sinus is the muscular cor frontale. The lobules extend radially outward from the sinus in three developmental zones. Basal Zone 1 nearest the sinus contains large hematopoietic stem cells with euchromatic nuclei that stain positive for proliferation cell nuclear antigen (PCNA). Zone 2 contains smaller, actively dividing cells as indicated by positive 5-bromo-20-deoxyuridine (BrdU) staining. Distal Zone 3 contains small, loosely packed cells with heterochromatic nuclei, many cytoplasmic granules and vesicles indicating that they will eventually differentiate into hemocytes and enter circulation. Three main arteries, namely the ophthalmic and the 2 branches of the antennary, connect the heart to the HO. Use of India ink and 0.1 µm fluorescent micro-beads injected into the heart revealed that the cor frontale could immediately remove foreign particles from hemolymph by filtration. Fluorescent beads were also detected in the hematopoietic tissue at 30 min after injection, indicating that it could be penetrated by foreign particles. However, the fluorescent signal completely disappeared from the whole HO after 4 h, indicating its role in removal of foreign particles. In conclusion, the present study demonstrated for the first time the detailed histological structures of the HO of M. rosenbergii and its relationship to hematopoiesis and removal of foreign particles from hemolymph.


Subject(s)
Hematopoietic System/cytology , Hematopoietic System/immunology , Palaemonidae/immunology , Animals , Arthropod Proteins/chemistry , Hematopoietic Stem Cells , Hemocytes/immunology , Hemolymph , Palaemonidae/anatomy & histology , Phagocytosis , Proliferating Cell Nuclear Antigen/chemistry
11.
Fish Shellfish Immunol ; 89: 108-116, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30928665

ABSTRACT

To identify molecules involved in Macrobrachium rosenbergii nodavirus (MrNV) entry into hemocytes of the giant freshwater prawn M. rosenbergii, biotinylated prawn hemocyte membrane proteins were prepared, purified and separated by SDS-PAGE. The proteins were blotted on the nitrocellulose membrane before incubation with the MrNV capsid protein (MrNV-CP) by a VOPBA technique. Subsequent mass spectrometry and analysis of immune-reactive bands represent putative binding partners including transglutaminase (TG), actin, α2-macroglobulin, α1-tubulin, F1-ATP synthase ß-subunit and a currently uncharacterized protein. The sequence of TG has been characterized and found 5 amino acids differences to a previously reported MrTG (ADX99580), mainly at its N-terminal part and thus, we named it MrTGII (KM008611). Recombinant MrTGII was prepared to produce a polyclonal antibody against it, which was successfully revealed the presence of MrTGII (100 kDa) in prawn hemocyte lysates. Using the pentylamine-biotin incorporation assay, an acyl transfer reaction was observed when hemocyte lysates were added to solutions containing MrNV-CP, suggesting that hemocyte MrTG could use MrNV-CP as the substrate. The expression levels of MrTGII were changed during the course of MrNV infection. By using immunostaining technique, location of MrTGII on the hemocyte surface was confirmed. Specific interaction between MrTGII with MrNV-CP in a dose-dependent manner was confirmed by in vitro ELISA assay. The highest binding activity of MrNV-CP was found with the N-terminal portion of the protein. In vitro neutralization using anti-MrTGII antibody resulted in inhibition of MrNV attachment to the hemocyte surface, accompanied by a dramatic reduction in viral replication. This is the first time that crustacean TG has been shown to be involved in viral entry, in addition to its roles in blood clotting and haematopoiesis.


Subject(s)
Hemocytes/enzymology , Nodaviridae/physiology , Palaemonidae/immunology , Transglutaminases/genetics , Virus Replication , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Hemocytes/virology , Microscopy, Fluorescence , Transglutaminases/chemistry , Transglutaminases/metabolism
12.
Environ Microbiol ; 19(5): 2077-2089, 2017 05.
Article in English | MEDLINE | ID: mdl-28345194

ABSTRACT

Glycolysis and oxidative phosphorylation are the fundamental pathways of ATP generation in eukaryotes. Yet in microsporidia, endoparasitic fungi living at the limits of cellular streamlining, oxidative phosphorylation has been lost: energy is obtained directly from the host or, during the dispersive spore stage, via glycolysis. It was therefore surprising when the first sequenced genome from the Enterocytozoonidae - a major family of human and animal-infecting microsporidians - appeared to have lost genes for glycolysis. Here, we sequence and analyse genomes from additional members of this family, shedding new light on their unusual biology. Our survey includes the genome of Enterocytozoon hepatopenaei, a major aquacultural parasite currently causing substantial economic losses in shrimp farming, and Enterospora canceri, a pathogen that lives exclusively inside epithelial cell nuclei of its crab host. Our analysis of gene content across the clade suggests that Ent. canceri's adaptation to intranuclear life is underpinned by the expansion of transporter families. We demonstrate that this entire lineage of pathogens has lost glycolysis and, uniquely amongst eukaryotes, lacks any obvious intrinsic means of generating energy. Our study provides an important resource for the investigation of host-pathogen interactions and reductive evolution in one of the most medically and economically important microsporidian lineages.


Subject(s)
Enterocytozoon/metabolism , Genome, Protozoan/genetics , Glycolysis/genetics , Hexokinase/genetics , Host-Parasite Interactions/physiology , Oxidative Phosphorylation , Penaeidae/parasitology , Animals , Base Sequence , Biological Evolution , Enterocytozoon/genetics , Enterocytozoon/pathogenicity , Humans , Microsporidiosis/parasitology , Phylogeny , Sequence Analysis, DNA
13.
Appl Environ Microbiol ; 83(16)2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28576761

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) of shrimp is caused by Vibrio parahaemolyticus isolates (VPAHPND isolates) that harbor a pVA plasmid encoding toxins PirA Vp and PirB Vp These are released from VPAHPND isolates that colonize the shrimp stomach and produce pathognomonic AHPND lesions (massive sloughing of hepatopancreatic tubule epithelial cells). PCR results indicated that V. parahaemolyticus isolate XN87 lacked pirA Vp but carried pirB Vp Unexpectedly, Western blot analysis of proteins from the culture broth of XN87 revealed the absence of both toxins, and the lack of PirB Vp was further confirmed by enzyme-linked immunosorbent assay. However, shrimp immersion challenge with XN87 resulted in 47% mortality without AHPND lesions. Instead, lesions consisted of collapsed hepatopancreatic tubule epithelia. In contrast, control shrimp challenged with typical VPAHPND isolate 5HP gave 90% mortality, accompanied by AHPND lesions. Sequence analysis revealed that the pVA plasmid of XN87 contained a mutated pirA Vp gene interrupted by the out-of-frame insertion of a transposon gene fragment. The upstream region and the beginning of the original pirA Vp gene remained intact, but the insertion caused a 2-base reading frameshift in the remainder of the pirA Vp gene sequence and in the downstream pirB Vp gene sequence. Reverse transcription-PCR and sequencing of 5HP revealed a bicistronic pirAB Vp mRNA transcript that was not produced by XN87, explaining the absence of both toxins in its culture broth. However, the virulence of XN87 revealed that some V. parahaemolyticus isolates carrying mutant pVA plasmids that produce no Pir Vp toxins can cause mortality in shrimp in ponds experiencing an outbreak of early mortality syndrome (EMS) but may not have been previously recognized to be AHPND related because they did not cause pathognomonic AHPND lesions.IMPORTANCE Shrimp acute hepatopancreatic necrosis disease (AHPND) is caused by Vibrio parahaemolyticus isolates (VPAHPND isolates) that harbor the pVA1 plasmid encoding toxins PirA Vp and PirB Vp The toxins are produced in the shrimp stomach but cause death by massive sloughing of hepatopancreatic tubule epithelial cells (pathognomonic AHPND lesions). V. parahaemolyticus isolate XN87 harbors a mutant pVA plasmid that produces no Pir toxins and does not cause AHPND lesions but still causes ∼50% shrimp mortality. Such isolates may cause a portion of the mortality in ponds experiencing an outbreak of EMS that is not ascribed to VPAHPND Thus, they pose to shrimp farmers an additional threat that would be missed by current testing for VPAHPND Moribund shrimp from ponds experiencing an outbreak of EMS that exhibit collapsed hepatopancreatic tubule epithelial cells can serve as indicators for the possible presence of such isolates, which can then be confirmed by additional PCR tests for the presence of a pVA plasmid.

14.
BMC Vet Res ; 13(1): 9, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-28056950

ABSTRACT

BACKGROUND: Enterocytozoon hepatopenaei (EHP) causes hepatopancreatic microsporidiosis (HPM) in shrimp. It is probably endemic in Australasia and was first characterized and named from the giant or black tiger shrimp Penaeus monodon from Thailand in 2009. Later, it was also found to infect exotic Penaeus vannamei imported for cultivation in Asia. HPM is not normally associated with shrimp mortality, but information from shrimp farmers indicates that it is associated with significant growth retardation that is not clearly noticeable until 2-3 months of cultivation. In order to study modes of HPM transmission and to test possible control measures, a laboratory challenge model was needed that would mimic the mode of infection in shrimp ponds. RESULTS: We describe successful transmission in a cohabitation model with natural E. hepatopenaei (EHP)-infected shrimp in closed, perforated plastic containers placed in aquaria together with free-swimming, uninfected shrimp. After a period of 14 days all the free-swimming shrimp tested positive by PCR (approximately 60% with heavy infections evident by 1-step PCR positive test results) and gave positive histological and in situ hybridization results for E. hepatopenaei (EHP) in the hepatopancreas. CONCLUSIONS: A laboratory cohabitation model for studying E. hepatopenaei (EHP) has been developed and used to confirm that E. hepatopenaei (EHP) can be directly transmitted horizontally among shrimp via water. The model will facilitate studies on methods to prevent the E. hepatopenaei (EHP) transmission.


Subject(s)
Enterocytozoon/physiology , Hepatopancreas/parasitology , Penaeidae/parasitology , Animals , Host-Parasite Interactions , Polymerase Chain Reaction
15.
J Invertebr Pathol ; 147: 76-85, 2017 07.
Article in English | MEDLINE | ID: mdl-27867019

ABSTRACT

Viral pathogens pose a primary threat to global shrimp aquaculture. Despite the urgent industry need for them, practical anti-viral control methods are unavailable due, in part, to lack of an adaptive immune response in crustaceans that renders conventional vaccination methods ineffective. One currently studied method of high interest for protecting shrimp against viral infection relies on the post-transcriptional gene silencing mechanism called RNA interference (RNAi) that is induced by gene-specific constructs of double stranded RNA (dsRNA). Although this approach was first described for successful protection of shrimp against white spot disease (WSD) by injecting dsRNA specific to genes of white spot syndrome virus (WSSV) into shrimp in the laboratory in 2005 no practical method for use of dsRNA in shrimp farms has been developed to date. The apparent bottleneck for farm-scale applications of RNAi-mediated viral control in shrimp aquaculture is the lack of simple and cost-effective delivery methods. This review summarizes recent studies on use and delivery of dsRNA to shrimp via injection and oral routes in hatcheries and on farms and it discusses the research directions that might lead to development of practical methods for applications with farmed shrimp. Oral delivery methods tested so far include use of dsRNA-expressing bacteria as a component of dry feed pellets or use of living brine shrimp (Artemia) pre-fed with dsRNA before they are fed to shrimp. Also tested have been dsRNA enclosed in nanocontainers including chitosan, liposomes and viral-like particles (VLP) before direct injection or use as components of feed pellets for hatchery or pond-reared shrimp.


Subject(s)
Disease Resistance/genetics , Penaeidae/virology , RNA Interference , Animals , Aquaculture , Vaccines, Virus-Like Particle/therapeutic use , Virus Diseases/prevention & control
17.
Fish Shellfish Immunol ; 40(2): 478-84, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25107695

ABSTRACT

In our research efforts to reduce the impact of white spot syndrome virus (WSSV) disease outbreaks in shrimp aquaculture, we studied the effect of ß-glucan administration to activate the prophenoloxidase (proPO) enzymatic cascade prior to WSSV challenge. Injection of a single dose of ß-glucan (5 µg/g) prior to WSSV challenge resulted in activation of the proPO system and reduced shrimp mortality (25-50%) when compared to controls (100%). By contrast, no significant reduction was observed using yellow head virus (YHV) in a similar protocol. We subsequently hypothesized that administration of a second dose of ß-glucan after WSSV challenge might reduce shrimp mortality further. Surprisingly, the opposite occurred, and mortality of the WSSV-infected shrimp increased to 100% after the second ß-glucan dose. Both immunofluorescence and RT-PCR assays revealed low WSSV levels in hemocytes of shrimp collected after the second dose of ß-glucan administration, suggesting that the cause of increased mortality was unlikely to be increased WSSV replication. We found from measured phenoloxidase acitivity (PO) and H2O2 production that the higher mortality may have resulted from a combination of WSSV infection plus over-production of reactive oxygen species (ROS) stimulated by two doses of ß-glucan. Thus, caution may be prudent in continuous or prolonged activation of the shrimp immune system by ß-glucan administration lest it exacerbate shrimp mortality in the event of WSSV infection.


Subject(s)
Penaeidae/immunology , Penaeidae/virology , Virus Replication/drug effects , White spot syndrome virus 1/drug effects , beta-Glucans/pharmacology , Adjuvants, Immunologic/pharmacology , Animals , Dose-Response Relationship, Drug , Fluorescent Antibody Technique , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Penaeidae/metabolism , Polymerase Chain Reaction , Proteoglycans , Reactive Oxygen Species/metabolism , White spot syndrome virus 1/physiology
18.
Fish Shellfish Immunol ; 34(4): 1018-24, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23416697

ABSTRACT

Disease outbreaks caused by viral pathogens constitute a major limitation to development of the shrimp aquaculture industry. Many research have been conducted to better understand how host shrimp respond to viral infections with the aim of using the gained knowledge to develop better strategies for disease management and control. One approach has been to study the interactions between host and viral proteins, and particularly host virus-binding proteins that might play an important role in the viral infection process. Within the past five years, increasing numbers of virus-binding proteins (VBPs) have been reported in shrimp. Characterization of these molecules has emphasized on their potential therapeutic applications by demonstrating their activities in inhibition of viral replication via in vivo neutralization assay. However, signaling to induce innate antiviral immune responses as a consequence of binding between viral proteins and VBPs remain to be fully elucidated.

19.
Fish Shellfish Immunol ; 34(5): 1042-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23337109

ABSTRACT

The cellular signal-transduction process is largely controlled by protein phosphorylation. Shrimp infected with yellow head virus show dramatic changes in their hemocyte phosphoproteomic patterns, and aberrant activation of phosphorylation-based signaling networks has been implicated in a number of diseases. In this study, we focused on phosphorylation of Penaeus monodon myosin regulatory light chain (PmMRLC) that is induced at an early hour post YHV infection and is concomitant with cellular actin remodeling. In shrimp cell cultures, this phosphorylation was inhibited by the myosin light chain kinase (MLCK) inhibitors ML-7 and ML-9, suggesting that PmMLC phosphorylation is MLCK pathway-dependent. Blocking PmMRLC phosphorylation resulted in increased replication of YHV and reduction of phagocytic activities of shrimp hemocytes called semigranular cells (SGC) and granular cells (GC). Injection of MLCK inhibitors prior to YHV challenge resulted in dose-dependent elevation in quantity of YHV-positive GC and cytoplasmic YHV protein, coincident with high shrimp mortality. Altogether, we demonstrated that PmMRLC phosphorylation increases after YHV infection in shrimp and that inhibition of the phosphorylation leads to increased YHV replication, reduced hemocyte phagocytic activity (probably through actin remodeling) and subsequent shrimp death. Thus, further studies on the MLCK activation pathway may lead to new strategies in development and implementation of therapy for YHV infections in shrimp.


Subject(s)
Myosin Light Chains/genetics , Penaeidae/genetics , Penaeidae/virology , Amino Acid Sequence , Animals , Blotting, Western , Chromatography, Liquid , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Electrophoresis, Gel, Two-Dimensional , Fluorescent Antibody Technique , Hemocytes/chemistry , Hemocytes/metabolism , Hemocytes/virology , Molecular Sequence Data , Myosin Light Chains/chemistry , Myosin Light Chains/metabolism , Penaeidae/chemistry , Penaeidae/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Phylogeny , Proteome/chemistry , Proteome/genetics , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Roniviridae/immunology , Sequence Alignment , Sequence Analysis, DNA , Tandem Mass Spectrometry
20.
BMC Vet Res ; 9: 139, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23856195

ABSTRACT

BACKGROUND: The microsporidian Enterocytozoon hepatopenaei was first described from Thailand in 2009 in farmed, indigenous giant tiger shrimp Penaeus (Penaeus) monodon. The natural reservoir for the parasite is still unknown. More recently, a microsporidian closely resembling it in morphology and tissue preference was found in Thai-farmed, exotic, whiteleg shrimp Penaeus (Litopenaeus) vannamei exhibiting white feces syndrome (WFS). Our objective was to compare the newly found pathogen with E. hepatopenaei and to determine its causal relationship with WFS. RESULTS: Generic primers used to amplify a fragment of the small subunit ribosomal RNA (ssu rRNA) gene for cloning and sequencing revealed that the new parasite from WFS ponds had 99% sequence identity to that of E. hepatopenaei, suggesting it was conspecific. Normal histological analysis using tissue sections stained with hematoxylin and eosin (H&E) revealed that relatively few tubule epithelial cells exhibited spores, suggesting that the infections were light. However, the H&E results were deceptive since nested PCR and in situ hybridization analysis based on the cloned ssu rRNA gene fragment revealed very heavy infections in tubule epithelial cells in the central region of the hepatopancreas in the absence of spores. Despite these results, high prevalence of E. hepatopenaei in shrimp from ponds not exhibiting WFS and a pond that had recovered from WFS indicated no direct causal association between these infections and WFS. This was supported by laboratory oral challenge trials that revealed direct horizontal transmission to uninfected shrimp but no signs of WFS. CONCLUSIONS: The microsporidian newly found in P. vannamei is conspecific with previously described E. hepatopenaei and it is not causally associated with WFS. However, the deceptive severity of infections (much greater than previously reported in P. monodon) would undoubtedly have a negative effect on whiteleg shrimp growth and production efficiency and this could be exacerbated by the possibility of horizontal transmission revealed by laboratory challenge tests. Thus, it is recommended that the PCR and in situ hybridization methods developed herein be used to identify the natural reservoir species so they can be eliminated from the shrimp rearing system.


Subject(s)
Enterocytozoon/pathogenicity , Penaeidae/microbiology , Animals , Digestive System/microbiology , Digestive System/pathology , Enterocytozoon/genetics , Enterocytozoon/physiology , In Situ Hybridization/veterinary , Penaeidae/anatomy & histology , Polymerase Chain Reaction/veterinary , RNA, Ribosomal/genetics , Sequence Alignment/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL